92 research outputs found
Fast, robust and laser-free universal entangling gates for trapped-ion quantum computing
A novel two-qubit entangling gate for RF-controlled trapped-ion quantum
processors is proposed theoretically and demonstrated experimentally. The speed
of this gate is an order of magnitude higher than that of previously
demonstrated two-qubit entangling gates in static magnetic field gradients. At
the same time, the phase-modulated field driving the gate, dynamically
decouples the qubits from amplitude and frequency noise, increasing the qubits'
coherence time by two orders of magnitude. The gate requires only a single
continuous RF field per qubit, making it well suited for scaling a quantum
processor to large numbers of qubits. Implementing this entangling gate, we
generate the Bell states and in
s with fidelities up to % in a static
magnetic gradient of only 19.09 T/m. At higher magnetic field gradients, the
entangling gate speed can be further improved to match that of laser-based
counterparts
Critical and direct involvement of the CD23 stalk region in IgE binding
BackgroundThe low-affinity receptor for IgE, FcΔRII (CD23), contributes to allergic inflammation through allergen presentation to T cells, regulation of IgE responses, and enhancement of transepithelial allergen migration.ObjectiveWe sought to investigate the interaction between CD23, chimeric monoclonal human IgE, and the corresponding birch pollen allergen Bet v 1 at a molecular level.MethodsWe expressed 4 CD23 variants. One variant comprised the full extracellular portion of CD23, including the stalk and head domain; 1 variant was identical with the first, except for an amino acid exchange in the stalk region abolishing the N-linked glycosylation site; and 2 variants represented the head domain, 1 complete and 1 truncated. The 4 CD23 variants were purified as monomeric and structurally folded proteins, as demonstrated by gel filtration and circular dichroism. By using a human IgE mAb, the corresponding allergen Bet v 1, and a panel of antibodies specific for peptides spanning the CD23 surface, both binding and inhibition assays and negative stain electron microscopy were performed.ResultsA hitherto unknown IgE-binding site was mapped on the stalk region of CD23, and the nonâN-glycosylated monomeric version of CD23 was superior in IgE binding compared with glycosylated CD23. Furthermore, we demonstrated that a therapeutic anti-IgE antibody, omalizumab, which inhibits IgE binding to FcΔRI, also inhibited IgE binding to CD23.ConclusionOur results provide a new model for the CD23-IgE interaction. We show that the stalk region of CD23 is crucially involved in IgE binding and that the interaction can be blocked by the therapeutic anti-IgE antibody omalizumab
Recommended from our members
Treatment of wild-type mice with 2,3-butanediol, a urinary biomarker of Fmo5-/- mice, decreases plasma cholesterol and epididymal fat deposition
We previously showed that Fmo5-/- mice exhibit a lean phenotype and slower metabolic ageing. Their characteristics include lower plasma glucose and cholesterol, greater glucose tolerance and insulin sensitivity, and a reduction in age-related weight gain and whole-body fat deposition. In this paper, nuclear magnetic resonance (NMR) spectroscopy-based metabolite analyses of the urine of Fmo5-/- and wild-type mice identified two isomers of 2,3-butanediol as discriminating urinary biomarkers of Fmo5-/- mice. Antibiotic-treatment of Fmo5-/- mice increased plasma cholesterol concentration and substantially reduced urinary excretion of 2,3-butanediol isomers, indicating that the gut microbiome contributed to the lower plasma cholesterol of Fmo5-/- mice, and that 2,3-butanediol is microbially derived. Short- and long-term treatment of wild-type mice with a 2,3-butanediol isomer mix decreased plasma cholesterol and epididymal fat deposition but had no effect on plasma concentrations of glucose or insulin, or on body weight. In the case of long-term treatment, the effects were maintained after withdrawal of 2,3-butanediol. Short-, but not long-term treatment, also decreased plasma concentrations of triglycerides and non-esterified fatty acids. Fecal transplant from Fmo5-/- to wild-type mice had no effect on plasma cholesterol, and 2,3-butanediol was not detected in the urine of recipient mice, suggesting that the microbiota of the large intestine was not the source of 2,3-butanediol. However, 2,3-butanediol was detected in the stomach of Fmo5-/- mice, which was enriched for Lactobacillus genera, known to produce 2,3-butanediol. Our results indicate a microbial contribution to the phenotypic characteristic of Fmo5-/- mice of decreased plasma cholesterol and identify 2,3-butanediol as a potential agent for lowering plasma cholesterol
BCR-signalling synergizes with TLR-signalling for induction of AID and immunoglobulin class-switching through the non-canonical NF-ÎșB pathway
By diversifying antibody biological effector functions, class switch DNA recombination has a central role in the maturation of the antibody response. Here we show that BCR-signalling synergizes with Toll-like receptor (TLR) signalling to induce class switch DNA recombination. BCR-signalling activates the non-canonical NF-ÎșB pathway and enhances the TLR-dependent canonical NF-ÎșB pathway, thereby inducing activation-induced cytidine deaminase (AID), which is critical for class switch DNA recombination. Escherichia coli lipopolysaccharide (LPS) triggers dual TLR4/BCR-signalling and induces hallmarks of BCR-signalling, including CD79a phosphorylation and Ca2+ mobilization, and activates both the NF-ÎșB pathways to induce AID and class switch DNA recombination in a PI(3)K p85α-dependent fashion. CD40-signalling activates the two NF-ÎșB pathways to induce AID and class switch DNA recombination independent of BCR-signalling. Finally, dual BCR/TLR-engaging NPâlipopolysaccharide effectively elicits class-switched NP-specific IgG3 and IgG2b in mice. Thus, by integrating signals of the non-canonical and canonical NF-ÎșB pathways, BCR and TLRs synergize to induce AID and T-cell-independent class switch DNA recombination
International Society of Sports Nutrition Position Stand: Nutritional recommendations for single-stage ultra-marathon; training and racing
Background. In this Position Statement, the International Society of Sports Nutrition (ISSN) provides an objective and critical review of the literature pertinent to nutritional considerations for training and racing in single-stage ultra-marathon. Recommendations for Training. i) Ultra-marathon runners should aim to meet the caloric demands of training by following an individualized and periodized strategy, comprising a varied, food-first approach; ii) Athletes should plan and implement their nutrition strategy with sufficient time to permit adaptations that enhance fat oxidative capacity; iii) The evidence overwhelmingly supports the inclusion of a moderate-to-high carbohydrate diet (i.e., ~60% of energy intake, 5 â 8 gâž±kgâ1·dâ1) to mitigate the negative effects of chronic, training-induced glycogen depletion; iv) Limiting carbohydrate intake before selected low-intensity sessions, and/or moderating daily carbohydrate intake, may enhance mitochondrial function and fat oxidative capacity. Nevertheless, this approach may compromise performance during high-intensity efforts; v) Protein intakes of ~1.6 g·kgâ1·dâ1 are necessary to maintain lean mass and support recovery from training, but amounts up to 2.5 gâž±kgâ1·dâ1 may be warranted during demanding training when calorie requirements are greater; Recommendations for Racing. vi) To attenuate caloric deficits, runners should aim to consume 150 - 400 kcalâž±hâ1 (carbohydrate, 30 â 50 gâž±hâ1; protein, 5 â 10 gâž±hâ1) from a variety of calorie-dense foods. Consideration must be given to food palatability, individual tolerance, and the increased preference for savory foods in longer races; vii) Fluid volumes of 450 â 750 mLâž±hâ1 (~150 â 250 mL every 20 min) are recommended during racing. To minimize the likelihood of hyponatraemia, electrolytes (mainly sodium) may be needed in concentrations greater than that provided by most commercial products (i.e., >575 mg·Lâ1 sodium). Fluid and electrolyte requirements will be elevated when running in hot and/or humid conditions; viii) Evidence supports progressive gut-training and/or low-FODMAP diets (fermentable oligosaccharide, disaccharide, monosaccharide and polyol) to alleviate symptoms of gastrointestinal distress during racing; ix) The evidence in support of ketogenic diets and/or ketone esters to improve ultra-marathon performance is lacking, with further research warranted; x) Evidence supports the strategic use of caffeine to sustain performance in the latter stages of racing, particularly when sleep deprivation may compromise athlete safety
- âŠ