2,402 research outputs found
Consistent analysis of neutral- and charged-current neutrino scattering off carbon
Background: Good understanding of the cross sections for (anti)neutrino
scattering off nuclear targets in the few-GeV energy region is a prerequisite
for correct interpretation of results of ongoing and planned oscillation
experiments.
Purpose: Clarify possible source of disagreement between recent measurements
of the cross sections on carbon.
Method: Nuclear effects in (anti)neutrino scattering off carbon nucleus are
described using the spectral function approach. The effect of two- and
multi-nucleon final states is accounted for by applying an effective value of
the axial mass, fixed to 1.23 GeV. Neutral-current elastic (NCE) and
charged-current quasielastic (CCQE) processes are treated on equal footing.
Results: The differential and total cross sections for the energy ranging
from a few hundreds of MeV to 100 GeV are obtained and compared to the
available data from the BNL E734, MiniBooNE, and NOMAD experiments.
Conclusions: Nuclear effects in NCE and CCQE scattering seem to be very
similar. Within the spectral function approach, the axial mass from the shape
analysis of the MiniBooNE data is in good agreement with the results reported
by the BNL E734 and NOMAD Collaborations. However, the combined analysis of NCE
and CCQE data does not seem to support the contribution of multi-nucleon final
states being large enough to explain the normalization of the
MiniBooNE-reported cross sections.Comment: 14 pages, 9 figures, detailed discussion of the role of FSI is adde
Cosmic ray modulation in a random anisotropic magnetic field
Inhomogeneities of the interplanetary magnetic field can be divided into small scale and large scale ones as may be required by the character of the problem of cosmic ray (CR) propagation. CR propagation in stochastic magnetic fields is of diffusion character. The main contribution into the scattering of CR particles is made by their interaction with inhomogeneities of the magnetic field H which have characteristic dimensions 1 of the order of Larmor radius R=cp/eH of particle (p is the absolute value of particle momentum, e is particle charge, c is velocity of light). Scattering of particles on such inhomogeneities leads to their diffusion mostly along a magnetic field with characteristic dimensions of variation in space exceeding the mean free path
Magnetization of nanoparticle systems in a rotating magnetic field
The investigation of a sizable thermal enhancement of magnetization is put
forward for uniaxial ferromagnetic nanoparticles that are placed in a rotating
magnetic field. We elucidate the nature of this phenomenon and evaluate the
resonant frequency dependence of the induced magnetization. Moreover, we reveal
the role of magnetic dipolar interactions, point out potential applications and
reason the feasibility of an experimental observation of this effect.Comment: 10 pages, 2 figure
Interleukin (IL)–12 and IL-23 Are Key Cytokines for Immunity against Salmonella in Humans
Patients with inherited deficiency of the interleukin (IL)–12/IL-23–interferon (IFN)–g axis show increased susceptibility to invasive disease caused by the intramacrophage pathogens salmonellae and mycobacteria. We analyzed data on 154 patients with such deficiency. Significantly more patients with IL-12/IL-23–component deficiency had a history of salmonella disease than did those with IFN-g–component deficiency. Salmonella disease was typically severe, extraintestinal, and caused by nontyphoidal serovars. These findings strongly suggest that IL-12/IL-23 is a key cytokine for immunity against salmonella in humans and that IL-12/IL-23 mediates this protective effect partly through IFN-g–independent pathways. Investigation of the IL-12/IL-23–IFN-g axis should be considered in patients with invasive salmonella disease
The Modified Weighted Slab Technique: Models and Results
In an attempt to understand the source and propagation of galactic cosmic
rays we have employed the Modified Weighted Slab technique along with recent
values of the relevant cross sections to compute primary to secondary ratios
including B/C and Sub-Fe/Fe for different galactic propagation models. The
models that we have considered are the disk-halo diffusion model, the dynamical
halo wind model, the turbulent diffusion model and a model with minimal
reacceleration. The modified weighted slab technique will be briefly discussed
and a more detailed description of the models will be given. We will also
discuss the impact that the various models have on the problem of anisotropy at
high energy and discuss what properties of a particular model bear on this
issue.Comment: LaTeX - AASTEX format, Submitted to ApJ, 8 figures, 20 page
Far-Ultraviolet Color Gradients in Early-Type Galaxies
We discuss far-UV (1500 A) surface photometry and FUV-B color profiles for 8
E/S0 galaxies from images taken with the Ultraviolet Imaging Telescope,
primarily during the Astro-2 mission. In three cases, the FUV radial profiles
are more consistent with an exponential than a de Vaucouleurs function, but
there is no other evidence for the presence of a disk or of young, massive
stars. In all cases except M32 the FUV-B color becomes redder at larger radii.
There is a wide range of internal radial FUV-B color gradients. However, we
find no correlation between the FUV-B color gradients and internal metallicity
gradients based on Mg absorption features. We conclude that metallicity is not
the sole parameter controlling the "UV upturn component" in old populations.Comment: 11 pages; tar.gz file includes LaTeX text file, 3 PostScript figures.
Paper to be published in ApJ Letter
The effects of discreteness of galactic cosmic rays sources
Most studies of GeV Galactic Cosmic Rays (GCR) nuclei assume a steady
state/continuous distribution for the sources of cosmic rays, but this
distribution is actually discrete in time and in space. The current progress in
our understanding of cosmic ray physics (acceleration, propagation), the
required consistency in explaining several GCRs manifestation (nuclei,
,...) as well as the precision of present and future space missions
(e.g. INTEGRAL, AMS, AGILE, GLAST) point towards the necessity to go beyond
this approximation. A steady state semi-analytical model that describes well
many nuclei data has been developed in the past years based on this
approximation, as well as others. We wish to extend it to a time dependent
version, including discrete sources. As a first step, the validity of several
approximations of the model we use are checked to validate the approach: i) the
effect of the radial variation of the interstellar gas density is inspected and
ii) the effect of a specific modeling for the galactic wind (linear vs
constant) is discussed. In a second step, the approximation of using continuous
sources in space is considered. This is completed by a study of time
discreteness through the time-dependent version of the propagation equation. A
new analytical solution of this equation for instantaneous point-like sources,
including the effect of escape, galactic wind and spallation, is presented.
Application of time and space discretness to definite propagation conditions
and realistic distributions of sources will be presented in a future paper.Comment: final version, 8 figures, accepted in ApJ. A misprint in fig 8 labels
has been correcte
Direct replacement of oral sodium benzoate with glycerol phenylbutyrate in children with urea cycle disorders
Long-term management of urea cycle disorders (UCDs) often involves unlicensed oral sodium benzoate (NaBz) which has a high volume and unpleasant taste. A more palatable treatment is licenced and available (glycerol phenylbutyrate [GPB], Ravicti) but guidance on how to transition patients from NaBz is lacking. A retrospective analysis of clinical and biochemical data was performed for eight children who transitioned from treatment with a single ammonia scavenger, NaBz, to GPB at a single metabolic centre; UCDs included arginosuccinic aciduria (ASA) (n = 5), citrullinaemia type 1 (n = 2) and carbamoyl phosphate synthetase I deficiency (CPS1) (n = 1). Patients transitioned either by gradual transition over 1–2 weeks (n = 3) or direct replacement of NaBz with GPB (n = 5). Median initial dose of GPB was 8.5 mL/m2/day based on published product information; doses were revisited subsequently in clinic and titrated individually (range 4.5–11 mL/m2/day). Pre-transition and post-transition mean ammonia levels were 37 μmol/L (SD 28 μmol/L) and 29 μmol/L (SD 22 μmol/L), respectively (p = 0.09), and mean glutamine levels were 664 μmol/L (SD 225 μmol/L) and 598 μmol/L (SD 185 μmol/L), respectively (p = 0.24). There were no reductions in levels of branched chain amino acids. No related adverse drug reactions were reported. Patients preferred GPB because of its lower volume and greater palatability. Direct replacement of NaBz with GPB maintained metabolic control and was simple for the health service and patients to manage. A more cautious approach with additional monitoring would be warranted in brittle patients and patients whose ammonia levels are difficult to control
- …