9 research outputs found

    APOL1 C-Terminal Variants May Trigger Kidney Disease through Interference with APOL3 Control of Actomyosin

    Get PDF
    The C-terminal variants G1 and G2 of apolipoprotein L1 (APOL1) confer human resistance to the sleeping sickness parasite Trypanosoma rhodesiense, but they also increase the risk of kidney disease. APOL1 and APOL3 are death-promoting proteins that are partially associated with the endoplasmic reticulum and Golgi membranes. We report that in podocytes, either APOL1 C-terminal helix truncation (APOL1Δ) or APOL3 deletion (APOL3KO) induces similar actomyosin reorganization linked to the inhibition of phosphatidylinositol-4-phosphate [PI(4)P] synthesis by the Golgi PI(4)-kinase IIIB (PI4KB). Both APOL1 and APOL3 can form K+ channels, but only APOL3 exhibits Ca2+-dependent binding of high affinity to neuronal calcium sensor-1 (NCS-1), promoting NCS-1-PI4KB interaction and stimulating PI4KB activity. Alteration of the APOL1 C-terminal helix triggers APOL1 unfolding and increased binding to APOL3, affecting APOL3-NCS-1 interaction. Since the podocytes of G1 and G2 patients exhibit an APOL1Δ or APOL3KO-like phenotype, APOL1 C-terminal variants may induce kidney disease by preventing APOL3 from activating PI4KB, with consecutive actomyosin reorganization of podocytes.info:eu-repo/semantics/publishe

    Soluble CD163 Changes Indicate Monocyte Association With Cognitive Deficits in Parkinson's Disease

    Get PDF
    Background Parkinson's disease (PD) is a neurodegenerative disorder with a significant immune component, as demonstrated by changes in immune biomarkers in patients' biofluids. However, which specific cells are responsible for those changes is unclear because most immune biomarkers can be produced by various cell types. Objectives The aim of this study was to explore monocyte involvement in PD. Methods We investigated the monocyte-specific biomarker sCD163, the soluble form of the receptor CD163, in cerebrospinal fluid (CSF) and serum in two experiments, and compared it with other biomarkers and clinical data. Potential connections between CD163 and alpha-synuclein were studied in vitro. Results CSF-sCD163 increased in late-stage PD and correlated with the PD biomarkers alpha-synuclein, Tau, and phosphorylated Tau, whereas it inversely correlated with the patients' cognitive scores, supporting monocyte involvement in neurodegeneration and cognition in PD. Serum-sCD163 increased only in female patients, suggesting a sex-distinctive monocyte response. CSF-sCD163 also correlated with molecules associated with adaptive and innate immune system activation and with immune cell recruitment to the brain. Serum-sCD163 correlated with proinflammatory cytokines and acute-phase proteins, suggesting a relation to chronic systemic inflammation. Our in vitro study showed that alpha-synuclein activates macrophages and induces shedding of sCD163, which in turn enhances alpha-synuclein uptake by myeloid cells, potentially participating in its clearance. Conclusions Our data present sCD163 as a potential cognition-related biomarker in PD and suggest a role for monocytes in both peripheral and brain immune responses. This may be directly related to alpha-synuclein's proinflammatory capacity but could also have consequences for alpha-synuclein processing. (c) 2020 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder SocietyPeer reviewe

    Apolipoproteins L1 and L3 control mitochondrial membrane dynamics.

    Full text link
    Apolipoproteins L1 and L3 (APOLs) are associated at the Golgi with the membrane fission factors phosphatidylinositol 4-kinase-IIIB (PI4KB) and non-muscular myosin 2A. Either APOL1 C-terminal truncation (APOL1Δ) or APOL3 deletion (APOL3-KO [knockout]) reduces PI4KB activity and triggers actomyosin reorganization. We report that APOL3, but not APOL1, controls PI4KB activity through interaction with PI4KB and neuronal calcium sensor-1 or calneuron-1. Both APOLs are present in Golgi-derived autophagy-related protein 9A vesicles, which are involved in PI4KB trafficking. Like APOL3-KO, APOL1Δ induces PI4KB dissociation from APOL3, linked to reduction of mitophagy flux and production of mitochondrial reactive oxygen species. APOL1 and APOL3, respectively, can interact with the mitophagy receptor prohibitin-2 and the mitophagosome membrane fusion factor vesicle-associated membrane protein-8 (VAMP8). While APOL1 conditions PI4KB and APOL3 involvement in mitochondrion fission and mitophagy, APOL3-VAMP8 interaction promotes fusion between mitophagosomal and endolysosomal membranes. We propose that APOL3 controls mitochondrial membrane dynamics through interactions with the fission factor PI4KB and the fusion factor VAMP8.SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Analysis of the interplay between all-trans retinoic acid and histone deacetylase inhibitors in leukemic cells

    Full text link
    The treatment of acute promyelocytic leukemia (APL) with all-trans retinoic acid (ATRA) induces granulocytic differentiation. This process renders APL cells resistant to cytotoxic chemotherapies. Epigenetic regulators of the histone deacetylases (HDACs) family, which comprise four classes (I-IV), critically control the development and progression of APL. We set out to clarify the parameters that determine the interaction between ATRA and histone deacetylase inhibitors (HDACi). Our assays included drugs against class I HDACs (MS-275, VPA, and FK228), panHDACi (LBH589, SAHA), and the novel HDAC6-selective compound Marbostat-100. We demonstrate that ATRA protects APL cells from cytotoxic effects of SAHA, MS-275, and Marbostat-100. However, LBH589 and FK228, which have a superior substrate-inhibitor dissociation constant (Ki) for the class I deacetylases HDAC1, 2, 3, are resistant against ATRA-dependent cytoprotective effects. We further show that HDACi evoke DNA damage, measured as induction of phosphorylated histone H2AX and by the comet assay. The ability of ATRA to protect APL cells from the induction of p-H2AX by HDACi is a readout for the cytoprotective effects of ATRA. Moreover, ATRA increases the fraction of cells in the G1 phase, together with an accumulation of the cyclin-dependent kinase inhibitor p21 and a reduced expression of thymidylate synthase (TdS). In contrast, the ATRA-dependent activation of the transcription factors STAT1, NF-kappa B, and C/EBP hardly influences the responses of APL cells to HDACi. We conclude that the affinity of HDACi for class I HDACs determines whether such drugs can kill naive and maturated APL cells

    Haptoglobin-related protein in human plasma correlates to haptoglobin concentrations and phenotypes

    Full text link
    Haptoglobin-related protein (Hpr) is a plasma protein with high sequence similarity to haptoglobin (Hp). Like Hp, Hpr also binds hemoglobin (Hb) with high affinity, but it does not bind to the Hb-Hp receptor CD163 on macrophages. The Hpr concentration is markedly lower than Hp in plasma and its regulation is not understood. In the present study, we have developed non-crossreactive antibodies to Hpr to analyze the Hpr concentration in 112 plasma samples from anonymized individuals and compared it to Hp. The results show that plasma Hpr correlated with Hp concentrations (rho = 0.46, p = .0001). Hpr accounts for on average 0.35% of the Hp/Hpr pool but up to 29% at low Hp levels. Furthermore, the Hpr concentrations were significantly lower in individuals with the Hp2-2 phenotype compared to those with the Hp2-1 or Hp1-1 phenotypes. Experimental binding analysis did not provide evidence that Hpr associates with Hp and in this way is removed via CD163. In conclusion, the Hpr concentration correlates to Hp concentrations and Hp-phenotypes by yet unknown mechanisms independent of CD163-mediated removal of Hb-Hp complexes.</p

    APOL1 C-Terminal Variants May Trigger Kidney Disease through Interference with APOL3 Control of Actomyosin

    Full text link
    The C-terminal variants G1 and G2 of apolipoprotein L1 (APOL1) confer human resistance to the sleeping sickness parasite Trypanosoma rhodesiense, but they also increase the risk of kidney disease. APOL1 and APOL3 are death-promoting proteins that are partially associated with the endoplasmic reticulum and Golgi membranes. We report that in podocytes, either APOL1 C-terminal helix truncation (APOL1Δ) or APOL3 deletion (APOL3KO) induces similar actomyosin reorganization linked to the inhibition of phosphatidylinositol-4-phosphate [PI(4)P] synthesis by the Golgi PI(4)-kinase IIIB (PI4KB). Both APOL1 and APOL3 can form K+ channels, but only APOL3 exhibits Ca2+-dependent binding of high affinity to neuronal calcium sensor-1 (NCS-1), promoting NCS-1-PI4KB interaction and stimulating PI4KB activity. Alteration of the APOL1 C-terminal helix triggers APOL1 unfolding and increased binding to APOL3, affecting APOL3-NCS-1 interaction. Since the podocytes of G1 and G2 patients exhibit an APOL1Δ or APOL3KO-like phenotype, APOL1 C-terminal variants may induce kidney disease by preventing APOL3 from activating PI4KB, with consecutive actomyosin reorganization of podocytes.status: publishe
    corecore