61 research outputs found

    Novel phenotype of mouse spermatozoa following deletion of nine β-defensin genes

    Get PDF
    β-defensin peptides are a large family of antimicrobial peptides. Although they kill microbes in vitro and interact with immune cells, the precise role of these genes in vivo remains uncertain. Despite their inducible presence at mucosal surfaces, their main site of expression is the epididymis. Recent evidence suggests that a major function of these peptides is in sperm maturation. In addition to previous work suggesting this, work at the MRC Human Genetics Unit, Edinburgh, has shown that homozygous deletion of a cluster of nine β-defensin genes in the mouse results in profound male sterility. The spermatozoa derived from the mutants had reduced motility and increased fragility. Epididymal spermatozoa isolated from the cauda region of the homozygous mutants demonstrated precocious capacitation and increased spontaneous acrosome reactions compared with those from wild-types. Despite this, these mutant spermatozoa had reduced ability to bind to the zona pellucida of oocytes. Ultrastructural examination revealed a disintegration of the microtubule structure of mutant-derived spermatozoa isolated from the epididymal cauda region, but not from the caput. Consistent with premature acrosome reaction and hyperactivation, spermatozoa from mutant animals had significantly increased intracellular calcium content. This work demonstrates that in vivo β-defensins are essential for successful sperm maturation, and that their disruption alters intracellular calcium levels, which most likely leads to premature activation and spontaneous acrosome reactions that result in hyperactivation and loss of microtubule structure of the axoneme. Determining which of the nine genes are responsible for the phenotype and the relevance to human sperm function is important for future work on male infertility

    Duplication and selection in the evolution of primate β-defensin genes

    Get PDF
    BACKGROUND: Innate immunity is the first line of defense against microorganisms in vertebrates and acts by providing an initial barrier to microorganisms and triggering adaptive immune responses. Peptides such as β-defensins are an important component of this defense, providing a broad spectrum of antimicrobial activity against bacteria, fungi, mycobacteria and several enveloped viruses. β-defensins are small cationic peptides that vary in their expression patterns and spectrum of pathogen specificity. Disruptions in β-defensin function have been implicated in human diseases, including cystic fibrosis, and a fuller understanding of the variety, function and evolution of human β-defensins might form the basis for novel therapies. Here we use a combination of laboratory and computational techniques to characterize the main human β-defensin locus on chromosome 8p22-p23. RESULTS: In addition to known genes in the region we report the genomic structures and expression patterns of four novel human β-defensin genes and a related pseudogene. These genes show an unusual pattern of evolution, with rapid divergence between second exon sequences that encode the mature β-defensin peptides matched by relative stasis in first exons that encode signal peptides. CONCLUSIONS: We conclude that the 8p22-p23 locus has evolved by successive rounds of duplication followed by substantial divergence involving positive selection, to produce a diverse cluster of paralogous genes established before the human-baboon divergence more than 23 million years ago. Positive selection, disproportionately favoring alterations in the charge of amino-acid residues, is implicated as driving second exon divergence in these genes

    Instability of the insertional mutation in Cftr(TgH(neoim)Hgu )cystic fibrosis mouse model

    Get PDF
    BACKGROUND: A major boost to the cystic fibrosis disease research was given by the generation of various mouse models using gene targeting in embryonal stem cells. Moreover, the introduction of the same mutation on different inbred strains generating congenic strains facilitated the search for modifier genes. From the original Cftr(TgH(neoim)Hgu )CF mouse model we have generated using strict brother × sister mating two inbred Cftr(TgH(neoim)Hgu )mouse lines (CF/1 and CF/3). Thereafter, the insertional mutation was introgressed from CF/3 into three inbred backgrounds (C57BL/6, BALB/c, DBA/2J) generating congenic animals. In every backcross cycle germline transmission of the insertional mutation was monitored by direct probing the insertion via Southern RFLP. In order to bypass this time consuming procedure we devised an alternative PCR based protocol whereby mouse strains are differentiated at the Cftr locus by Cftr intragenic microsatellite genotypes that are tightly linked to the disrupted locus. RESULTS: Using this method we were able to identify animals carrying the insertional mutation based upon the differential haplotypic backgrounds of the three inbred strains and the mutant Cftr(TgH(neoim)Hgu )at the Cftr locus. Moreover, this method facilitated the identification of the precise vector excision from the disrupted Cftr locus in two out of 57 typed animals. This reversion to wild type status took place without any loss of sequence revealing the instability of insertional mutations during the production of congenic animals. CONCLUSIONS: We present intragenic microsatellite markers as a tool for fast and efficient identification of the introgressed locus of interest in the recipient strain during congenic animal breeding. Moreover, the same genotyping method allowed the identification of a vector excision event, posing questions on the stability of insertional mutations in mice

    A mechanistic evaluation of human beta defensin 2 mediated protection of human skin barrier in vitro

    Get PDF
    The human skin barrier, a biological imperative, is impaired in inflammatory skin diseases such as atopic dermatitis (AD). Staphylococcus aureus is associated with AD lesions and contributes to pathological inflammation and further barrier impairment. S. aureus secretes extracellular proteases, such as V8 (or 'SspA'), which cleave extracellular proteins to reduce skin barrier. Previous studies demonstrated that the host defence peptide human beta-defensin 2 (HBD2) prevented V8-mediated damage. Here, the mechanism of HBD2-mediated barrier protection in vitro is examined. Application of exogenous HBD2 provided protection against V8, irrespective of timeline of application or native peptide folding, raising the prospect of simple peptide analogues as therapeutics. HBD2 treatment, in context of V8-mediated damage, modulated the proteomic/secretomic profiles of HaCaT cells, altering levels of specific extracellular matrix proteins, potentially recovering V8 damage. However, HBD2 alone did not substantially modulate cellular proteomic/secretomics profiles in the absence of damage, suggesting possible therapeutic targeting of lesion damage sites only. HBD2 did not show any direct protease inhibition or induce expression of known antiproteases, did not alter keratinocyte migration or proliferation, or form protective nanonet structures. These data validate the barrier-protective properties of HBD2 in vitro and establish key protein datasets for further targeted mechanistic analyses.</p

    The complexity of selection at the major primate β-defensin locus

    Get PDF
    BACKGROUND: We have examined the evolution of the genes at the major human β-defensin locus and the orthologous loci in a range of other primates and mouse. For the first time these data allow us to examine selective episodes in the more recent evolutionary history of this locus as well as the ancient past. We have used a combination of maximum likelihood based tests and a maximum parsimony based sliding window approach to give a detailed view of the varying modes of selection operating at this locus. RESULTS: We provide evidence for strong positive selection soon after the duplication of these genes within an ancestral mammalian genome. Consequently variable selective pressures have acted on β-defensin genes in different evolutionary lineages, with episodes both of negative, and more rarely positive selection, during the divergence of primates. Positive selection appears to have been more common in the rodent lineage, accompanying the birth of novel, rodent-specific β-defensin genes. These observations allow a fuller understanding of the evolution of mammalian innate immunity. In both the rodent and primate lineages, sites in the second exon have been subject to positive selection and by implication are important in functional diversity. A small number of sites in the mature human peptides were found to have undergone repeated episodes of selection in different primate lineages. Particular sites were consistently implicated by multiple methods at positions throughout the mature peptides. These sites are clustered at positions predicted to be important for the specificity of the antimicrobial or chemoattractant properties of β-defensins. Surprisingly, sites within the prepropeptide region were also implicated as being subject to significant positive selection, suggesting previously unappreciated functional significance for this region. CONCLUSIONS: Identification of these putatively functional sites has important implications for our understanding of β-defensin function and for novel antibiotic design

    NRG Oncology-Radiation Therapy Oncology Group Study 1014: 1-Year Toxicity Report From a Phase 2 Study of Repeat Breast-Preserving Surgery and 3-Dimensional Conformal Partial-Breast Reirradiation for In-Breast Recurrence.

    Get PDF
    PURPOSE: To determine the associated toxicity, tolerance, and safety of partial-breast reirradiation. METHODS AND MATERIALS: Eligibility criteria included in-breast recurrence occurring \u3e1 year after whole-breast irradiation, \u3c3 \u3ecm, unifocal, and resected with negative margins. Partial-breast reirradiation was targeted to the surgical cavity plus 1.5 cm; a prescription dose of 45 Gy in 1.5 Gy twice daily for 30 treatments was used. The primary objective was to evaluate the rate of grade ≥3 treatment-related skin, fibrosis, and/or breast pain adverse events (AEs), occurring ≤1 year from re-treatment completion. A rate of ≥13% for these AEs in a cohort of 55 patients was determined to be unacceptable (86% power, 1-sided α = 0.07). RESULTS: Between 2010 and 2013, 65 patients were accrued, and the first 55 eligible and with 1 year follow-up were analyzed. Median age was 68 years. Twenty-two patients had ductal carcinoma in situ, and 33 had invasive disease: 19 ≤1 cm, 13 \u3e1 to ≤2 cm, and 1 \u3e2 cm. All patients were clinically node negative. Systemic therapy was delivered in 51%. All treatment plans underwent quality review for contouring accuracy and dosimetric compliance. All treatment plans scored acceptable for tumor volume contouring and tumor volume dose-volume analysis. Only 4 (7%) scored unacceptable for organs at risk contouring and organs at risk dose-volume analysis. Treatment-related skin, fibrosis, and/or breast pain AEs were recorded as grade 1 in 64% and grade 2 in 7%, with only 1 ( CONCLUSION: Partial-breast reirradiation with 3-dimensional conformal radiation therapy after second lumpectomy for patients experiencing in-breast failures after whole-breast irradiation is safe and feasible, with acceptable treatment quality achieved. Skin, fibrosis, and breast pain toxicity was acceptable, and grade 3 toxicity was rare

    Peptide Fragments of a β-Defensin Derivative with Potent Bactericidal Activity

    Get PDF
    β-Defensins are known to be both antimicrobial and able to chemoattract various immune cells. Although the sequences of paralogous genes are not highly conserved, the core defensin structure is retained. Defb14-1C(V) has bactericidal activity similar to that of its parent peptide (murine β-defensin Defb14) despite all but one of the canonical six cysteines being replaced with alanines. The 23-amino-acid N-terminal half of Defb14-1C(V) is a potent antimicrobial while the C-terminal half is not. Here, we use a library of peptide derivatives to demonstrate that the antimicrobial activity can be localized to a particular region. Overlapping fragments of the N-terminal region were tested for their ability to kill Gram-positive and Gram-negative bacteria. We demonstrate that the most N-terminal fragments (amino acids 1 to 10 and 6 to 17) are potent antimicrobials against Gram-negative bacteria whereas fragments based on sequence more C terminal than amino acid 13 have very poor activity against both Gram-positive and -negative types. We further test a series of N-terminal deletion peptides in both their monomeric and dimeric forms. We find that bactericidal activity is lost against both Gram types as the deletion region increases, with the point at which this occurs varying between bacterial strains. The dimeric form of the peptides is more resistant to the peptide deletions, but this is not due just to increased charge. Our results indicate that the primary sequence, together with structure, is essential in the bactericidal action of this β-defensin derivative peptide and importantly identifies a short fragment from the peptide that is a potent bactericide
    • …
    corecore