84 research outputs found

    Occurrence and impact of delayed cerebral ischemia after coiling and after clipping in the International Subarachnoid Aneurysm Trial (ISAT)

    Get PDF
    Delayed cerebral ischemia (DCI) is an important cause of poor outcome after aneurysmal subarachnoid hemorrhage (SAH). We studied differences in incidence and impact of DCI as defined clinically after coiling and after clipping in the International Subarachnoid Aneurysm Trial. We calculated odds ratios (OR) for DCI for clipping versus coiling with logistic regression analysis. With coiled patients without DCI as the reference group, we calculated ORs for poor outcome at 2 months and 1 year for coiled patients with DCI and for clipped patients without, and with DCI. With these ORs, we calculated relative excess risk due to Interaction (RERI). Clipping increased the risk of DCI compared to coiling in the 2,143 patients OR 1.24, 95% confidence interval (95% CI 1.01–1.51). Coiled patients with DCI, clipped patients without DCI, and clipped patients with DCI all had higher risks of poor outcome than coiled patients without DCI. Clipping and DCI showed no interaction for poor outcome at 2 months: RERI 0.12 (95% CI −1.16 to 1.40) or 1 year: RERI −0.48 (95% CI −1.69 to 0.74). Only for patients treated within 4 days, coiling and DCI was associated with a poorer outcome at 1 year than clipping and DCI (RERI −2.02, 95% CI −3.97 to −0.08). DCI was more common after clipping than after coiling in SAH patients in ISAT. Impact of DCI on poor outcome did not differ between clipped and coiled patients, except for patients treated within 4 days, in whom DCI resulted more often in poor outcome after coiling than after clipping

    The relationship between the time of cerebral desaturation episodes and outcome in aneurysmal subarachnoid haemorrhage: a preliminary study.

    Get PDF
    In this preliminary study we investigated the relationship between the time of cerebral desaturation episodes (CDEs), the severity of the haemorrhage, and the short-term outcome in patients with aneurysmal subarachnoid haemorrhage (aSAH). Thirty eight patents diagnosed with aneurysmal subarachnoid haemorrhage were analysed in this study. Regional cerebral oxygenation (rSO2) was assessed using near infrared spectroscopy (NIRS). A CDE was defined as rSO2 < 60% with a duration of at least 30 min. The severity of the aSAH was assessed using the Hunt and Hess scale and the short-term outcome was evaluated utilizing the Glasgow Outcome Scale. CDEs were found in 44% of the group. The total time of the CDEs and the time of the longest CDE on the contralateral side were longer in patients with severe versus moderate aSAH [h:min]: 8:15 (6:26-8:55) versus 1:24 (1:18-4:18), p = 0.038 and 2:05 (2:00-5:19) versus 0:48 (0:44-2:12), p = 0.038. The time of the longest CDE on the ipsilateral side was longer in patients with poor versus good short-term outcome [h:min]: 5:43 (3:05-9:36) versus 1:47 (0:42-2:10), p = 0.018. The logistic regression model for poor short-term outcome included median ABP, the extent of the haemorrhage in the Fisher scale and the time of the longest CDE. We have demonstrated that the time of a CDE is associated with the severity of haemorrhage and short-term outcome in aSAH patients. A NIRS measurement may provide valuable predictive information and could be considered as additional method of neuromonitoring of patients with aSAH

    Pharmacological treatment of delayed cerebral ischemia and vasospasm in subarachnoid hemorrhage

    Get PDF
    Subarachnoid hemorrhage after the rupture of a cerebral aneurysm is the cause of 6% to 8% of all cerebrovascular accidents involving 10 of 100,000 people each year. Despite effective treatment of the aneurysm, delayed cerebral ischemia (DCI) is observed in 30% of patients, with a peak on the tenth day, resulting in significant infirmity and mortality. Cerebral vasospasm occurs in more than half of all patients and is recognized as the main cause of delayed cerebral ischemia after subarachnoid hemorrhage. Its treatment comprises hemodynamic management and endovascular procedures. To date, the only drug shown to be efficacious on both the incidence of vasospasm and poor outcome is nimodipine. Given its modest effects, new pharmacological treatments are being developed to prevent and treat DCI. We review the different drugs currently being tested

    The critical care management of poor-grade subarachnoid haemorrhage

    Full text link

    Metamorphosis of Subarachnoid Hemorrhage Research: from Delayed Vasospasm to Early Brain Injury

    Get PDF
    Delayed vasospasm that develops 3–7 days after aneurysmal subarachnoid hemorrhage (SAH) has traditionally been considered the most important determinant of delayed ischemic injury and poor outcome. Consequently, most therapies against delayed ischemic injury are directed towards reducing the incidence of vasospasm. The clinical trials based on this strategy, however, have so far claimed limited success; the incidence of vasospasm is reduced without reduction in delayed ischemic injury or improvement in the long-term outcome. This fact has shifted research interest to the early brain injury (first 72 h) evoked by SAH. In recent years, several pathological mechanisms that activate within minutes after the initial bleed and lead to early brain injury are identified. In addition, it is found that many of these mechanisms evolve with time and participate in the pathogenesis of delayed ischemic injury and poor outcome. Therefore, a therapy or therapies focused on these early mechanisms may not only prevent the early brain injury but may also help reduce the intensity of later developing neurological complications. This manuscript reviews the pathological mechanisms of early brain injury after SAH and summarizes the status of current therapies

    The non-immunosuppressive management of childhood nephrotic syndrome

    Get PDF

    Ceria Nanoparticles Synthesized With Aminocaproic Acid for the Treatment of Subarachnoid Hemorrhage

    No full text
    corecore