57 research outputs found
Module production of the one-arm AFP 3D pixel tracker
The ATLAS Forward Proton (AFP) detector is designed to identify events in
which one or two protons emerge intact from the LHC collisions. AFP will
consist of a tracking detector, to measure the momentum of the protons, and a
time of flight system to reduce the background from multiple proton-proton
interactions. Following an extensive qualification period, 3D silicon pixel
sensors were selected for the AFP tracker. The sensors were produced at CNM
(Barcelona) during 2014. The tracker module assembly and quality control was
performed at IFAE during 2015. The assembly of the first AFP arm and the
following installation in the LHC tunnel took place in February 2016. This
paper reviews the fabrication process of the AFP tracker focusing on the pixel
modules.Comment: PIXEL 2016 proceedings; Submitted to JINS
Prototype ATLAS IBL Modules using the FE-I4A Front-End Readout Chip
The ATLAS Collaboration will upgrade its semiconductor pixel tracking
detector with a new Insertable B-layer (IBL) between the existing pixel
detector and the vacuum pipe of the Large Hadron Collider. The extreme
operating conditions at this location have necessitated the development of new
radiation hard pixel sensor technologies and a new front-end readout chip,
called the FE-I4. Planar pixel sensors and 3D pixel sensors have been
investigated to equip this new pixel layer, and prototype modules using the
FE-I4A have been fabricated and characterized using 120 GeV pions at the CERN
SPS and 4 GeV positrons at DESY, before and after module irradiation. Beam test
results are presented, including charge collection efficiency, tracking
efficiency and charge sharing.Comment: 45 pages, 30 figures, submitted to JINS
Characterization of a high resolution and high sensitivity pre-clinical PET scanner with 3D event reconstruction
COMPET is a preclinical PET scanner aiming towards a high sensitivity, a high resolution and MRI compatibility by implementing a novel detector geometry. In this approach, long scintillating LYSO crystals are used to absorb the gamma-rays. To determine the point of interaction (P01) between gamma-ray and crystal, the light exiting the crystals on one of the long sides is collected with wavelength shifters (WLS) perpendicularly arranged to the crystals. This concept has two main advantages: (1) The parallax error is reduced to a minimum and is equal for the whole field of view (FOV). (2) The P01 and its energy deposit is known in all three dimension with a high resolution, allowing for the reconstruction of Compton scattered gamma-rays. Point (1) leads to a uniform point source resolution (PSR) distribution over the whole FOV, and also allows to place the detector close to the object being imaged. Both points (1) and (2) lead to an increased sensitivity and allow for both high resolution and sensitivity at the same time, while keeping a low number of readout channels. In total, COMPET incorporates 1080 readout channels (600 crystals, 480 WLS). It has an axial FOV of 80 mm and adjustable bore opening between 30 mm and 80 mm. It consists of four modules with five layers each. Simulations show a PSR of below I mm in the transaxial plane and a sensitivity of up to 16\% in the center of the FOV. The readout is based on time over threshold signals, sampled with an FPGA, which allows for the measurement of high event rates at the order of mega-counts per seconds. Its compact design and compatibility to high magnetic fields will allow to use it as an insert for an already existing MRI scanner. A first semi-layer with 12 WLS and 10 LYSO crystal was built and connected to the COMPET readout system. Coincidence data between this module and a tagger crystal using a small Ge-68 and a 60 MBq F-18 source was taken. (C) 2011 Elsevier B.V. All rights reserved
Production of ATLAS silicon detector modules: Report from the Scandinavian Cluster
This document describes the assembly and quality assurance of Semi Conductor Tracker (SCT) barrel modules performed by the Scandinavian Cluster. The project has been carried out as a joint effort between University of Bergen, University of Oslo and Uppsala University
- …