3,822 research outputs found

    On the parametric dependences of a class of non-linear singular maps

    Full text link
    We discuss a two-parameter family of maps that generalize piecewise linear, expanding maps of the circle. One parameter measures the effect of a non-linearity which bends the branches of the linear map. The second parameter rotates points by a fixed angle. For small values of the nonlinearity parameter, we compute the invariant measure and show that it has a singular density to first order in the nonlinearity parameter. Its Fourier modes have forms similar to the Weierstrass function. We discuss the consequences of this singularity on the Lyapunov exponents and on the transport properties of the corresponding multibaker map. For larger non-linearities, the map becomes non-hyperbolic and exhibits a series of period-adding bifurcations.Comment: 17 pages, 13 figures, to appear in Discrete and Continuous Dynamical Systems, series B Higher resolution versions of Figures 5 downloadable at http://www.glue.umd.edu/~jrd

    Chaotic Scattering Theory of Transport and Reaction-Rate Coefficients

    Full text link
    The chaotic scattering theory is here extended to obtain escape-rate expressions for the transport coefficients appropriate for a simple classical fluid, or for a chemically reacting system. This theory allows various transport coefficients such as the coefficients of viscosity, thermal conductivity, etc., to be expressed in terms of the positive Lyapunov exponents and Kolmogorov-Sinai entropy of a set of phase space trajectories that take place on an appropriate fractal repeller. This work generalizes the previous results of Gaspard and Nicolis for the coefficient of diffusion of a particle moving in a fixed array of scatterers.Comment: 27 pages LaTeX, no figure

    Lyapunov spreading of semi-classical wave packets for the Lorentz Gas: theory and applications

    Get PDF
    We consider the quantum mechanical propagator for a particle moving in a dd-dimensional Lorentz gas, with fixed, hard sphere scatterers. To evaluate this propagator in the semi-classical region, and for times less than the Ehrenfest time, we express its effect on an initial Gaussian wave packet in terms of quantities analogous to those used to describe the exponential separation of trajectories in the classical version of this system. This result relates the spread of the wave packet to the rate of separation of classical trajectories, characterized by positive Lyapunov exponents. We consider applications of these results, first to illustrate the behavior of the wave-packet auto-correlation functions for wave packets on periodic orbits. The auto-correlation function can be related to the fidelity, or Loschmidt echo, for the special case that the perturbation is a small change in the mass of the particle. An exact expression for the fidelity, appropriate for this perturbation, leads to an analytical result valid over very long time intervals, inversely proportional to the size of the mass perturbation. For such perturbations, we then calculate the long-time echo for semi-classical wave packets on periodic orbits. This paper also corrects an earlier calculation for a quantum echo, included in a previous version of this paper. We explain the reasons for this correction

    A Note on the Ruelle Pressure for a Dilute Disordered Sinai Billiard

    Full text link
    The topological pressure is evaluated for a dilute random Lorentz gas, in the approximation that takes into account only uncorrelated collisions between the moving particle and fixed, hard sphere scatterers. The pressure is obtained analytically as a function of a temperature-like parameter, beta, and of the density of scatterers. The effects of correlated collisions on the topological pressure can be described qualitatively, at least, and they significantly modify the results obtained by considering only uncorrelated collision sequences. As a consequence, for large systems, the range of beta-values over which our expressions for the topological pressure are valid becomes very small, approaching zero, in most cases, as the inverse of the logarithm of system size.Comment: 15 pages RevTeX with 2 figures. Final version with some typo's correcte

    On thermostats and entropy production

    Full text link
    The connection between the rate of entropy production and the rate of phase space contraction for thermostatted systems in nonequilibrium steady states is discussed for a simple model of heat flow in a Lorentz gas, previously described by Spohn and Lebowitz. It is easy to show that for the model discussed here the two rates are not connected, since the rate of entropy production is non-zero and positive, while the overall rate of phase space contraction is zero. This is consistent with conclusions reached by other workers. Fractal structures appear in the phase space for this model and their properties are discussed. We conclude with a discussion of the implications of this and related work for understanding the role of chaotic dynamics and special initial conditions for an explanation of the Second Law of Thermodynamics.Comment: 14 pages, 1 figur

    Crossover from Diffusive to Ballistic Transport in Periodic Quantum Maps

    Full text link
    We derive an expression for the mean square displacement of a particle whose motion is governed by a uniform, periodic, quantum multi-baker map. The expression is a function of both time, tt, and Planck's constant, \hbar, and allows a study of both the long time, tt\to\infty, and semi-classical, 0\hbar\to 0, limits taken in either order. We evaluate the expression using random matrix theory as well as numerically, and observe good agreement between both sets of results. The long time limit shows that particle transport is generically ballistic, for any fixed value of Planck's constant. However, for fixed times, the semi-classical limit leads to diffusion. The mean square displacement for non-zero Planck's constant, and finite time, exhibits a crossover from diffusive to ballistic motion, with crossover time on the order of the inverse of Planck's constant. We argue, that these results are generic for a large class of 1D quantum random walks, similar to the quantum multi-baker, and that a sufficient condition for diffusion in the semi-classical limit is classically chaotic dynamics in each cell. Some connections between our work and the other literature on quantum random walks are discussed. These walks are of some interest in the theory of quantum computation.Comment: Final version to appear in Physica D, Proceedings of the International Workshop and Seminar on Microscopic Chaos and Transport in Many-Particle Systems, Dresden, 2002; corrected a minor error in section 3.1, new section 4.
    corecore