630 research outputs found

    Location of the Energy Levels of the Rare-Earth Ion in BaF2 and CdF2

    Full text link
    The location of the energy levels of rare-earth (RE) elements in the energy band diagram of BaF2 and CdF2 crystals is determined. The role of RE3+ and RE2+ ions in the capture of charge carriers, luminescence, and the formation of radiation defects is evaluated. It is shown that the substantial difference in the luminescence properties of BaF2:RE and CdF2:RE is associated with the location of the excited energy levels in the band diagram of the crystals

    Quantum Nature of Light Measured With a Single Detector

    Full text link
    We realized the most fundamental quantum optical experiment to prove the non-classical character of light: Only a single quantum emitter and a single superconducting nanowire detector were used. A particular appeal of our experiment is its elegance and simplicity. Yet its results unambiguously enforce a quantum theory for light. Previous experiments relied on more complex setups, such as the Hanbury-Brown-Twiss configuration, where a beam splitter directs light to two photodetectors, giving the false impression that the beam splitter is required. Our work results in a major simplification of the widely used photon-correlation techniques with applications ranging from quantum information processing to single-molecule detection.Comment: 7 page

    Energy levels and lifetimes of Nd IV, Pm IV, Sm IV, and Eu IV

    Full text link
    To address the shortage of experimental data for electron spectra of triply-ionized rare earth elements we have calculated energy levels and lifetimes of 4f{n+1} and 4f{n}5d configurations of Nd IV (n=2), Pm IV (n=3), Sm IV (n=4), and Eu IV (n=5) using Hartree-Fock and configuration interaction methods. To control the accuracy of our calculations we also performed similar calculations for Pr III, Nd III and Sm III, for which experimental data are available. The results are important, in particular, for physics of magnetic garnets.Comment: 4 pages 1 tabl

    Improved Fast Neutron Spectroscopy via Detector Segmentation

    Full text link
    Organic scintillators are widely used for fast neutron detection and spectroscopy. Several effects complicate the interpretation of results from detectors based upon these materials. First, fast neutrons will often leave a detector before depositing all of their energy within it. Second, fast neutrons will typically scatter several times within a detector, and there is a non-proportional relationship between the energy of, and the scintillation light produced by, each individual scatter; therefore, there is not a deterministic relationship between the scintillation light observed and the neutron energy deposited. Here we demonstrate a hardware technique for reducing both of these effects. Use of a segmented detector allows for the event-by-event correction of the light yield non-proportionality and for the preferential selection of events with near-complete energy deposition, since these will typically have high segment multiplicities.Comment: Accepted for publication in Nuclear Instruments and Methods in Physics Research Section

    Generation of degenerate, factorizable, pulsed squeezed light at telecom wavelengths

    Get PDF
    We characterize a periodically poled KTP crystal that produces an entangled, two-mode, squeezed state with orthogonal polarizations, nearly identical, factorizable frequency modes, and few photons in unwanted frequency modes. We focus the pump beam to create a nearly circular joint spectral probability distribution between the two modes. After disentangling the two modes, we observe Hong-Ou-Mandel interference with a raw (background corrected) visibility of 86 % (95 %) when an 8.6 nm bandwidth spectral filter is applied. We measure second order photon correlations of the entangled and disentangled squeezed states with both superconducting nanowire single-photon detectors and photon-number-resolving transition-edge sensors. Both methods agree and verify that the detected modes contain the desired photon number distributions

    Scintillation properties of O 1/spl times/1 Inch/sup 3/ LaBr/sub 3/: 5%Ce/sup 3+/ crystal

    Full text link
    corecore