237 research outputs found

    Recent advances in sulfotransferase enzyme activity assays

    Get PDF
    Sulfotransferases are enzymes that catalyze the transfer of sulfo groups from a donor, for example 3′-phosphoadenosine 5′-phosphosulfate, to an acceptor, for example the amino or hydroxyl groups of a small molecule, xenobiotic, carbohydrate, or peptide. These enzymes are important targets in the design of novel therapeutics for treatment of a variety of diseases. This review examines assays used for this important class of enzyme, paying particular attention to sulfotransferases acting on carbohydrates and peptides and the major challenges associated with their analysis

    Recent progress and applications in glycosaminoglycan and heparin research

    Get PDF
    Heparin, the focus of this review, is a critically important anticoagulant drug produced from animal sources, which was contaminated last year leading to a number of adverse side effects, some resulting in death. Heparin is a highly acidic polysaccharide and a member of a family of biopolymers called glycosaminoglycans. The structure and activities of heparin are detailed along with recent advances in heparin structural analysis and biological evaluation. Current state-of-the-art chemical and chemoenzymatic synthesis of heparin and new approaches for its metabolic engineering are described. New technologies, including microarrays and digital microfluidics, are proposed for high-throughput synthesis and screening of heparin and for the fabrication of an artificial Golgi

    Assays for determining heparan sulfate and heparin O-sulfotransferase activity and specificity

    Get PDF
    O-sulfotransferases (OSTs) are critical enzymes in the cellular biosynthesis of the biologically and pharmacologically important heparan sulfate and heparin. Recently, these enzymes have been cloned and expressed in bacteria for application in the chemoenzymatic synthesis of glycosaminoglycan-based drugs. OST activity assays have largely relied on the use of radioisotopic methods using [35S] 3'-phosphoadenosine-5'-phosphosulfate and scintillation counting. Herein, we examine alternative assays that are more compatible with a biomanufacturing environment. A high throughput microtiter-based approach is reported that relies on a coupled bienzymic colorimetric assay for heparan sulfate and heparin OSTs acting on polysaccharide substrates using arylsulfotransferase-IV and p-nitrophenylsulfate as a sacrificial sulfogroup donor. A second liquid chromatography-mass spectrometric assay, for heparan sulfate and heparin OSTs acting on structurally defined oligosaccharide substrates, is also reported that provides additional information on the number and positions of the transferred sulfo groups within the product. Together, these assays allow quantitative and mechanistic information to be obtained on OSTs that act on heparan sulfate and heparin precursors

    Toward an Artificial Golgi: Redesigning the Biological Activities of Heparan Sulfate on a Digital Microfluidic Chip

    Get PDF
    Using digital microfluidics, recombinant enzyme technology, and magnetic nanoparticles, we have created a functional prototype of an artificial Golgi organelle. Analogous to the natural Golgi, which is responsible for the enzymatic modification of glycosaminoglycans immobilized on proteins, this artificial Golgi enzymatically modifies glycosaminoglycans, specifically heparin sulfate (HS) chains immobilized onto magnetic nanoparticles. Sulfo groups were transferred from adenosine 3′-phosphate 5′-phosphosulfate to the 3-hydroxyl group of the D-glucosamine residue in an immobilized HS chain using D-glucosaminyl 3-O-sulfotransferase. After modification, the nanoparticles with immobilized HS exhibited increased affinity for fluorescently labeled antithrombin III as detected by confocal microscopy. Since the biosynthesis of HS involves an array of specialized glycosyl transferases, epimerase, and sulfotransferases, this approach should mimic the synthesis of HS in vivo. Furthermore, our method demonstrates the feasibility of investigating the effects of multi-enzyme systems on the structure of final glycan products for HS-based glycomic studies

    Control of the heparosan N-deacetylation leads to an improved bioengineered heparin

    Get PDF
    The production of the anticoagulant drug heparin from non-animal sources has a number of advantages over the current commercial production of heparin. These advantages include better source material availability, improved quality control, and reduced concerns about animal virus or prion impurities. A bioengineered heparin would have to be chemically and biologically equivalent to be substituted for animal-sourced heparin as a pharmaceutical. In an effort to produce bioengineered heparin that more closely resembles pharmaceutical heparin, we have investigated a key step in the process involving the N-deacetylation of heparosan. The extent of N-deacetylation directly affects the N-acetyl/N-sulfo ratio in bioengineered heparin and also impacts its molecular weight. Previous studies have demonstrated that the presence and quantity of N-acetylglucosamine in the nascent glycosaminoglycan chain, serving as the substrate for the subsequent enzymatic modifications (C5 epimerization and O-sulfonation), can impact the action of these enzymes and, thus, the content and distribution of iduronic acid and O-sulfo groups. In this study, we control the N-deacetylation of heparosan to produce a bioengineered heparin with an N-acetyl/N-sulfo ratio and molecular weight that is similar to animal-sourced pharmaceutical heparin. The structural composition and anticoagulant activity of the resultant bioengineered heparin was extensively characterized and compared to pharmaceutical heparin obtained from porcine intestinal mucosa

    Fibroblast Growth Factor-based Signaling through Synthetic Heparan Sulfate Blocks Copolymers Studied Using High Cell Density Three-dimensional Cell Printing

    Get PDF
    Four well-defined heparan sulfate (HS) block copolymers containing S-domains (high sulfo group content) placed adjacent to N-domains (low sulfo group content) were chemoenzymatically synthesized and characterized. The domain lengths in these HS block co-polymers were ∼40 saccharide units. Microtiter 96-well and three-dimensional cell-based microarray assays utilizing murine immortalized bone marrow (BaF3) cells were developed to evaluate the activity of these HS block co-polymers. Each recombinant BaF3 cell line expresses only a single type of fibroblast growth factor receptor (FGFR) but produces neither HS nor fibroblast growth factors (FGFs). In the presence of different FGFs, BaF3 cell proliferation showed clear differences for the four HS block co-polymers examined. These data were used to examine the two proposed signaling models, the symmetric FGF2-HS2-FGFR2 ternary complex model and the asymmetric FGF2-HS1-FGFR2 ternary complex model. In the symmetric FGF2-HS2-FGFR2 model, two acidic HS chains bind in a basic canyon located on the top face of the FGF2-FGFR2 protein complex. In this model the S-domains at the non-reducing ends of the two HS proteoglycan chains are proposed to interact with the FGF2-FGFR2 protein complex. In contrast, in the asymmetric FGF2-HS1-FGFR2 model, a single HS chain interacts with the FGF2-FGFR2 protein complex through a single S-domain that can be located at any position within an HS chain. Our data comparing a series of synthetically prepared HS block copolymers support a preference for the symmetric FGF2-HS2-FGFR2 ternary complex model

    Optimising biocatalyst design for obtaining high transesterification activity by α-chymotrypsin in non-aqueous media

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Enzymes are often used in organic solvents for catalyzing organic synthesis. Two enzyme preparations, EPRP (enzyme precipitated and rinsed with n-propanol) and PCMC (protein coated microcrystals) show much higher activities than lyophilized powders in such systems. Both preparations involve precipitation by an organic solvent. The clear understanding of why these preparations show higher catalytic activity than lyophilized powders in organic solvents is not available.</p> <p>Results</p> <p>It was found that EPRPs of α-chymotrypsin prepared by precipitation with <it>n</it>-propanol in the presence of trehalose contained substantial amount of trehalose (even though trehalose alone at these lower concentrations was not precipitated by <it>n</it>-propanol). The presence of trehalose in these EPRPs resulted in much higher transesterification rates (45.2 nmoles mg<sup>-1</sup>min<sup>-1</sup>) as compared with EPRPs prepared in the absence of trehalose (16.6 nmoles mg<sup>-1</sup>min<sup>-1</sup>) in octane. Both kinds of EPRPs gave similar initial transesterification rates in acetonitrile. Use of higher concentrations of trehalose (when trehalose alone also precipitates out), resulted in the formation of PCMCs, which showed higher transesterification rates in both octane and acetonitrile. SEM analysis showed the relative sizes of various preparations. Presence of trehalose resulted in EPRPs of smaller sizes.</p> <p>Conclusion</p> <p>The two different forms of enzymes (EPRP and PCMC) known to show higher activity in organic solvents were found to be different only in the way the low molecular weight additive was present along with the protein. Therefore, the enhancement in the transesterification activity in EPRPs prepared in the presence of trehalose was due to: (a) better retention of essential water layer for catalysis due to the presence of the sugar. This effect disappeared where the reaction media was polar as the polar solvent (acetonitrile) is more effective in stripping off the water from the enzyme; (b) reduction in particle size as revealed by SEM. In the case of PCMC, the enhancement in the initial rates was due to an increase in the surface area of the biocatalyst since protein is coated over the core material (trehalose or salt).</p> <p>It is hoped that the insight gained in this work would help in a better understanding for designing high activity biocatalyst preparation of non-aqueous media.</p

    The History of Communications and its Implications for the Internet

    Full text link
    • …
    corecore