5,056 research outputs found

    General Approach for Modeling and Control of Multiphase PMSM Drives

    Get PDF
    This article presents a modeling approach and a control strategy for multiphase surface-mounted permanent magnet synchronous machine drives. The mathematical model is completely general with respect to the machine parameters and to the winding configuration. It also intrinsically considers the effects of eventual constraints for the phase currents, generated from the electrical connections among the phase windings or resulting from faults. The current controller is entirely formalized in the phase variables domain. It is based on a pseudoinverse decoupling algorithm and on a linear decoupled controller. The current references are computed by means of a maximum-torque-per-ampere strategy, which can be also easily adapted for torque sharing purposes. The proposed controller requires minimum changes with respect to system reconfigurations or parameters variations and, therefore, it is suited both for healthy and for faulty operations. An extensive set of experimental results has been conducted to validate the proposed approach in several testing scenarios

    Hybrid Modulation Technique with DC-Bus Voltage Control for Multiphase NPC Converters

    Get PDF
    The article presents a novel carrier-based pulsewidth modulation technique for multiphase neutral point clamped converters. The technique is aimed to actively control the neutral point (NP) potential while supplying the desired set of line-to-line voltages to the load. Standard techniques are either based on the sole common mode voltage injection or on the sole multistep switching mode; contrarily, the proposed algorithm combines these two approaches to take advantage of their main benefits. The technique performs well for each number of phases, for each modulation index, and for each type of load. It can control in closed-loop the NP voltage to any desirable value with a reduced number of switching transitions. The proposed approach has been experimentally validated and compared with other carrier-based algorithms

    Electronic Structure and Charge Dynamics of Huesler Alloy Fe2TiSn Probed by Infrared and Optical Spectroscopy

    Full text link
    We report on the electrodynamics of a Heusler alloy Fe2TiSn probed over four decades in energy: from the far infrared to the ultraviolet. Our results do not support the suggestion of Kondo-lattice behavior inferred from specific heat measurements. Instead, we find a conventional Drude-like response of free carriers, with two additional absorption bands centered at around 0.1 and 0.87 eV. The latter feature can be interpreted as excitations across a pseudogap, in accord with band structure calculations.Comment: 3 pages, 4 figure

    A hybrid modulation technique for the DC-bus voltage balancing in a three-phase NPC converter

    Get PDF
    In this paper a new pulse width modulation technique for three-phase neutral point clamped (NPC) converter is presented, with the aim to actively control the dc-bus capacitors’ voltages. To meet this requirement, usually NPC modulation techniques are either based on the sole common mode voltage injection (CMI) or on the sole multi-step (MS) switching mode of operation. Contrarily, the presented approach combines these two strategies, taking advantages of all their main benefits while keeping the switching transitions to the minimum required number. The approach has been numerically tested and compared with some of the other strategies, showing an overall better behaviour, especially for high modulation indices

    Hybrid modulation technique with dc-bus voltage control for multiphase NPC converters

    Get PDF
    The paper presents a novel Carrier-Based Pulse Width Modulation (CBPWM) technique for multiphase Neutral Point Clamped (NPC) converters. The technique is aimed to actively control the Neutral Point (NP) potential while supplying the desired set of line-to-line voltages to the load. Standard techniques are either based on the sole Common Mode Voltage Injection (CMI) or on the sole Multi-Step (MS) switching mode; contrarily, the proposed algorithm combines these two approaches to take advantage of their main benefits. The technique performs well for each number of phases, for each modulation index and for each type of load. It can control in closed-loop the NP voltage to any desirable value with a reduced number of switching transitions. The proposed approach has been experimentally validated and compared with other carrier-based algorithms

    Pressure-tuning of the c-f hybridization in Yb metal detected by infrared spectroscopy up to 18 GPa

    Full text link
    It has been known that the elemental Yb, a divalent metal at mbient pressure, becomes a mixed-valent metal under external pressure, with its valence reaching ~2.6 at 30 GPa. In this work, infrared spectroscopy has been used to probe the evolution of microscopic electronic states associated with the valence crossover in Yb at external pressures up to 18 GPa. The measured infrared reflectivity spectrum R(w) of Yb has shown large variations with pressure. In particular, R(w) develops a deep minimum in the mid-infrared, which shifts to lower energy with increasing pressure. The dip is attributed to optical absorption due to a conduction c-f electron hybridization state, similarly to those previously observed for heavy fermion compounds. The red shift of the dip indicates that the cc-ff hybridization decreases with pressure, which is consistent with the increase of valence.Comment: 2 pages, to appear in J. Phys. Soc. Jpn. Supp

    Heavy fermion fluid in high magnetic fields: an infrared study of CeRu4_4Sb12_{12}

    Full text link
    We report a comprehensive infrared magneto-spectroscopy study of CeRu4_4Sb12_{12} compound revealing quasiparticles with heavy effective mass m^*, with a detailed analysis of optical constants in fields up to 17 T. We find that the applied magnetic field strongly affects the low energy excitations in the system. In particular, the magnitude of m^* \simeq 70 mb_b (mb_b is the quasiparticle band mass) at 10 K is suppressed by as much as 25 % at 17 T. This effect is in quantitative agreement with the mean-field solution of the periodic Anderson model augmented with a Zeeman term

    Anomalous Metal-Insulator Transition in Filled Skutterudite CeOs4_4Sb12_{12}

    Get PDF
    Anomalous metal-insulator transition observed in filled skutterudite CeOs4_4Sb12_{12} is investigated by constructing the effective tight-binding model with the Coulomb repulsion between f electrons. By using the mean field approximation, magnetic susceptibilities are calculated and the phase diagram is obtained. When the band structure has a semimetallic character with small electron and hole pockets at Γ\Gamma and H points, a spin density wave transition with the ordering vector Q=(1,0,0)\mathbf{Q}=(1,0,0) occurs due to the nesting property of the Fermi surfaces. Magnetic field enhances this phase in accord with the experiments.Comment: 4 pages, 4 figure
    corecore