136 research outputs found

    Theory Challenges of the Accelerating Universe

    Get PDF
    The accelerating expansion of the universe presents an exciting, fundamental challenge to the standard models of particle physics and cosmology. I highlight some of the outstanding challenges in both developing theoretical models and interpreting without bias the observational results from precision cosmology experiments in the next decade that will return data to help reveal the nature of the new physics. Examples given focus on distinguishing a new component of energy from a new law of gravity, and the effect of early dark energy on baryon acoustic oscillations.Comment: 10 pages, 4 figures; minor changes to match J. Phys. A versio

    Cerebrovascular Pathology in Down Syndrome and Alzheimer Disease

    Get PDF
    People with Down syndrome (DS) are at high risk for developing Alzheimer disease (AD) with age. Typically, by age 40 years, most people with DS have sufficient neuropathology for an AD diagnosis. Interestingly, atherosclerosis and hypertension are atypical in DS with age, suggesting the lack of these vascular risk factors may be associated with reduced cerebrovascular pathology. However, because the extra copy of APP leads to increased beta-amyloid peptide (Aβ) accumulation in DS, we hypothesized that there would be more extensive and widespread cerebral amyloid angiopathy (CAA) with age in DS relative to sporadic AD. To test this hypothesis CAA, atherosclerosis and arteriolosclerosis were used as measures of cerebrovascular pathology and compared in post mortem tissue from individuals with DS (n = 32), sporadic AD (n = 80) and controls (n = 37). CAA was observed with significantly higher frequencies in brains of individuals with DS compared to sporadic AD and controls. Atherosclerosis and arteriolosclerosis were rare in the cases with DS. CAA in DS may be a target for future interventional clinical trials

    Gross tumour volume radiomics for prognostication of recurrence & death following radical radiotherapy for NSCLC

    Get PDF
    Recurrence occurs in up to 36% of patients treated with curative-intent radiotherapy for NSCLC. Identifying patients at higher risk of recurrence for more intensive surveillance may facilitate the earlier introduction of the next line of treatment. We aimed to use radiotherapy planning CT scans to develop radiomic classification models that predict overall survival (OS), recurrence-free survival (RFS) and recurrence two years post-treatment for risk-stratification. A retrospective multi-centre study of >900 patients receiving curative-intent radiotherapy for stage I-III NSCLC was undertaken. Models using radiomic and/or clinical features were developed, compared with 10-fold cross-validation and an external test set, and benchmarked against TNM-stage. Respective validation and test set AUCs (with 95% confidence intervals) for the radiomic-only models were: (1) OS: 0.712 (0.592–0.832) and 0.685 (0.585–0.784), (2) RFS: 0.825 (0.733–0.916) and 0.750 (0.665–0.835), (3) Recurrence: 0.678 (0.554–0.801) and 0.673 (0.577–0.77). For the combined models: (1) OS: 0.702 (0.583–0.822) and 0.683 (0.586–0.78), (2) RFS: 0.805 (0.707–0.903) and 0·755 (0.672–0.838), (3) Recurrence: 0·637 (0.51–0.·765) and 0·738 (0.649–0.826). Kaplan-Meier analyses demonstrate OS and RFS difference of >300 and >400 days respectively between low and high-risk groups. We have developed validated and externally tested radiomic-based prediction models. Such models could be integrated into the routine radiotherapy workflow, thus informing a personalised surveillance strategy at the point of treatment. Our work lays the foundations for future prospective clinical trials for quantitative personalised risk-stratification for surveillance following curative-intent radiotherapy for NSCLC

    Prenatal Arsenic Exposure Alters Gene Expression in the Adult Liver to a Proinflammatory State Contributing to Accelerated Atherosclerosis

    Get PDF
    The mechanisms by which environmental toxicants alter developmental processes predisposing individuals to adult onset chronic disease are not well-understood. Transplacental arsenic exposure promotes atherogenesis in apolipoprotein E-knockout (ApoE−/−) mice. Because the liver plays a central role in atherosclerosis, diabetes and metabolic syndrome, we hypothesized that accelerated atherosclerosis may be linked to altered hepatic development. This hypothesis was tested in ApoE−/− mice exposed to 49 ppm arsenic in utero from gestational day (GD) 8 to term. GD18 hepatic arsenic was 1.2 µg/g in dams and 350 ng/g in fetuses. The hepatic transcriptome was evaluated by microarray analysis to assess mRNA and microRNA abundance in control and exposed pups at postnatal day (PND) 1 and PND70. Arsenic exposure altered postnatal developmental trajectory of mRNA and microRNA profiles. We identified an arsenic exposure related 51-gene signature at PND1 and PND70 with several hubs of interaction (Hspa8, IgM and Hnf4a). Gene ontology (GO) annotation analyses indicated that pathways for gluconeogenesis and glycolysis were suppressed in exposed pups at PND1, and pathways for protein export, ribosome, antigen processing and presentation, and complement and coagulation cascades were induced by PND70. Promoter analysis of differentially-expressed transcripts identified enriched transcription factor binding sites and clustering to common regulatory sites. SREBP1 binding sites were identified in about 16% of PND70 differentially-expressed genes. Western blot analysis confirmed changes in the liver at PND70 that included increases of heat shock protein 70 (Hspa8) and active SREBP1. Plasma AST and ALT levels were increased at PND70. These results suggest that transplacental arsenic exposure alters developmental programming in fetal liver, leading to an enduring stress and proinflammatory response postnatally that may contribute to early onset of atherosclerosis. Genes containing SREBP1 binding sites also suggest pathways for diabetes mellitus and rheumatoid arthritis, both diseases that contribute to increased cardiovascular disease in humans

    Understanding the genetic complexity of puberty timing across the allele frequency spectrum

    Get PDF
    Pubertal timing varies considerably and is associated with later health outcomes. We performed multi-ancestry genetic analyses on ~800,000 women, identifying 1,080 signals for age at menarche. Collectively, these explained 11% of trait variance in an independent sample. Women at the top and bottom 1% of polygenic risk exhibited ~11 and ~14-fold higher risks of delayed and precocious puberty, respectively. We identified several genes harboring rare loss-of-function variants in ~200,000 women, including variants in ZNF483, which abolished the impact of polygenic risk. Variant-to-gene mapping approaches and mouse gonadotropin-releasing hormone neuron RNA sequencing implicated 665 genes, including an uncharacterized G-protein-coupled receptor, GPR83, which amplified the signaling of MC3R, a key nutritional sensor. Shared signals with menopause timing at genes involved in DNA damage response suggest that the ovarian reserve might signal centrally to trigger puberty. We also highlight body size-dependent and independent mechanisms that potentially link reproductive timing to later life disease

    Epidemiologic and clinical updates on impulse control disorders: a critical review

    Get PDF
    The article reviews the current knowledge about the impulse control disorders (ICDs) with specific emphasis on epidemiological and pharmacological advances. In addition to the traditional ICDs present in the DSM-IV—pathological gambling, trichotillomania, kleptomania, pyromania and intermittent explosive disorder—a brief description of the new proposed ICDs—compulsive–impulsive (C–I) Internet usage disorder, C–I sexual behaviors, C–I skin picking and C–I shopping—is provided. Specifically, the article summarizes the phenomenology, epidemiology and comorbidity of the ICDs. Particular attention is paid to the relationship between ICDs and obsessive–compulsive disorder (OCD). Finally, current pharmacological options for treating ICDs are presented and discussed

    Phylogenetic ctDNA analysis depicts early-stage lung cancer evolution.

    Get PDF
    The early detection of relapse following primary surgery for non-small-cell lung cancer and the characterization of emerging subclones, which seed metastatic sites, might offer new therapeutic approaches for limiting tumour recurrence. The ability to track the evolutionary dynamics of early-stage lung cancer non-invasively in circulating tumour DNA (ctDNA) has not yet been demonstrated. Here we use a tumour-specific phylogenetic approach to profile the ctDNA of the first 100 TRACERx (Tracking Non-Small-Cell Lung Cancer Evolution Through Therapy (Rx)) study participants, including one patient who was also recruited to the PEACE (Posthumous Evaluation of Advanced Cancer Environment) post-mortem study. We identify independent predictors of ctDNA release and analyse the tumour-volume detection limit. Through blinded profiling of postoperative plasma, we observe evidence of adjuvant chemotherapy resistance and identify patients who are very likely to experience recurrence of their lung cancer. Finally, we show that phylogenetic ctDNA profiling tracks the subclonal nature of lung cancer relapse and metastasis, providing a new approach for ctDNA-driven therapeutic studies

    The evolution of lung cancer and impact of subclonal selection in TRACERx

    Get PDF
    Lung cancer is the leading cause of cancer-associated mortality worldwide. Here we analysed 1,644 tumour regions sampled at surgery or during follow-up from the first 421 patients with non-small cell lung cancer prospectively enrolled into the TRACERx study. This project aims to decipher lung cancer evolution and address the primary study endpoint: determining the relationship between intratumour heterogeneity and clinical outcome. In lung adenocarcinoma, mutations in 22 out of 40 common cancer genes were under significant subclonal selection, including classical tumour initiators such as TP53 and KRAS. We defined evolutionary dependencies between drivers, mutational processes and whole genome doubling (WGD) events. Despite patients having a history of smoking, 8% of lung adenocarcinomas lacked evidence of tobacco-induced mutagenesis. These tumours also had similar detection rates for EGFR mutations and for RET, ROS1, ALK and MET oncogenic isoforms compared with tumours in never-smokers, which suggests that they have a similar aetiology and pathogenesis. Large subclonal expansions were associated with positive subclonal selection. Patients with tumours harbouring recent subclonal expansions, on the terminus of a phylogenetic branch, had significantly shorter disease-free survival. Subclonal WGD was detected in 19% of tumours, and 10% of tumours harboured multiple subclonal WGDs in parallel. Subclonal, but not truncal, WGD was associated with shorter disease-free survival. Copy number heterogeneity was associated with extrathoracic relapse within 1 year after surgery. These data demonstrate the importance of clonal expansion, WGD and copy number instability in determining the timing and patterns of relapse in non-small cell lung cancer and provide a comprehensive clinical cancer evolutionary data resource

    The evolution of non-small cell lung cancer metastases in TRACERx

    Get PDF
    Metastatic disease is responsible for the majority of cancer-related deaths. We report the longitudinal evolutionary analysis of 126 non-small cell lung cancer (NSCLC) tumours from 421 prospectively recruited patients in TRACERx who developed metastatic disease, compared with a control cohort of 144 non-metastatic tumours. In 25% of cases, metastases diverged early, before the last clonal sweep in the primary tumour, and early divergence was enriched for patients who were smokers at the time of initial diagnosis. Simulations suggested that early metastatic divergence more frequently occurred at smaller tumour diameters (less than 8 mm). Single-region primary tumour sampling resulted in 83% of late divergence cases being misclassified as early, highlighting the importance of extensive primary tumour sampling. Polyclonal dissemination, which was associated with extrathoracic disease recurrence, was found in 32% of cases. Primary lymph node disease contributed to metastatic relapse in less than 20% of cases, representing a hallmark of metastatic potential rather than a route to subsequent recurrences/disease progression. Metastasis-seeding subclones exhibited subclonal expansions within primary tumours, probably reflecting positive selection. Our findings highlight the importance of selection in metastatic clone evolution within untreated primary tumours, the distinction between monoclonal versus polyclonal seeding in dictating site of recurrence, the limitations of current radiological screening approaches for early diverging tumours and the need to develop strategies to target metastasis-seeding subclones before relapse

    Genomic–transcriptomic evolution in lung cancer and metastasis

    Get PDF
    Intratumour heterogeneity (ITH) fuels lung cancer evolution, which leads to immune evasion and resistance to therapy. Here, using paired whole-exome and RNA sequencing data, we investigate intratumour transcriptomic diversity in 354 non-small cell lung cancer tumours from 347 out of the first 421 patients prospectively recruited into the TRACERx study. Analyses of 947 tumour regions, representing both primary and metastatic disease, alongside 96 tumour-adjacent normal tissue samples implicate the transcriptome as a major source of phenotypic variation. Gene expression levels and ITH relate to patterns of positive and negative selection during tumour evolution. We observe frequent copy number-independent allele-specific expression that is linked to epigenomic dysfunction. Allele-specific expression can also result in genomic–transcriptomic parallel evolution, which converges on cancer gene disruption. We extract signatures of RNA single-base substitutions and link their aetiology to the activity of the RNA-editing enzymes ADAR and APOBEC3A, thereby revealing otherwise undetected ongoing APOBEC activity in tumours. Characterizing the transcriptomes of primary–metastatic tumour pairs, we combine multiple machine-learning approaches that leverage genomic and transcriptomic variables to link metastasis-seeding potential to the evolutionary context of mutations and increased proliferation within primary tumour regions. These results highlight the interplay between the genome and transcriptome in influencing ITH, lung cancer evolution and metastasis
    corecore