427 research outputs found

    Modular Invariants for Lattice Polarized K3 Surfaces

    Full text link
    We study the class of complex algebraic K3 surfaces admitting an embedding of H+E8+E8 inside the Neron-Severi lattice. These special K3 surfaces are classified by a pair of modular invariants, in the same manner that elliptic curves over the field of complex numbers are classified by the J-invariant. Via the canonical Shioda-Inose structure we construct a geometric correspondence relating K3 surfaces of the above type with abelian surfaces realized as cartesian products of two elliptic curves. We then use this correspondence to determine explicit formulas for the modular invariants.Comment: 29 pages, LaTe

    Lattice Polarized K3 Surfaces and Siegel Modular Forms

    Full text link
    The goal of the present paper is two-fold. First, we present a classification of algebraic K3 surfaces polarized by the lattice H+E_8+E_7. Key ingredients for this classification are: a normal form for these lattice polarized K3 surfaces, a coarse moduli space and an explicit description of the inverse period map in terms of Siegel modular forms. Second, we give explicit formulas for a Hodge correspondence that relates these K3 surfaces to principally polarized abelian surfaces. The Hodge correspondence in question underlies a geometric two-isogeny of K3 surfaces

    Crosscaps in Gepner Models and the Moduli space of T2 Orientifolds

    Get PDF
    We study T^2 orientifolds and their moduli space in detail. Geometrical insight into the involutive automorphisms of T^2 allows a straightforward derivation of the moduli space of orientifolded T^2s. Using c=3 Gepner models, we compare the explicit worldsheet sigma model of an orientifolded T^2 compactification with the CFT results. In doing so, we derive half-supersymmetry preserving crosscap coefficients for generic unoriented Gepner models using simple current techniques to construct the charges and tensions of Calabi-Yau orientifold planes. For T^2s we are able to identify the O-plane charge directly as the number of fixed points of the involution; this number plays an important role throughout our analysis. At several points we make connections with the mathematical literature on real elliptic curves. We conclude with a preliminary extension of these results to elliptically fibered K3s.Comment: LaTeX, 59 pages, 21 figures (uses axodraw
    • …
    corecore