17 research outputs found
Stem cell therapy for white matter disorders: don’t forget the microenvironment!
White matter disorders (WMDs) are a major source of handicap at all ages. They often lead to progressive neurological dysfunction and early death. Although causes are highly diverse, WMDs share the property that glia (astrocytes and oligodendrocytes) are among the cells primarily affected, and that myelin is either not formed or lost. Many WMDs might benefit from cell replacement therapies. Successful preclinical studies in rodent models have already led to the first clinical trials in humans using glial or oligodendrocyte progenitor cells aiming at (re)myelination. However, myelin is usually not the only affected structure. Neurons, microglia, and astrocytes are often also affected and are all important partners in creating the right conditions for proper white matter repair. Composition of the extracellular environment is another factor to be considered. Cell transplantation therapies might therefore require inclusion of non-oligodendroglial cell types and target more than only myelin repair. WMD patients would likely benefit from multimodal therapy approaches involving stem cell transplantation and microenvironment-targeting strategies to alter the local environment to a more favorable state for cell replacement. Furthermore most proof-of-concept studies have been performed with human cells in rodent disease models. Since human glial cells show a larger regenerative capacity than their mouse counterparts in the host mouse brain, microenvironmental factors affecting white matter recovery might be overlooked in rodent studies. We would like to stress that cell replacement therapy is a highly promising therapeutic option for WMDs, but a receptive microenvironment is crucia
Neuron-glia interactions increase neuronal phenotypes in tuberous sclerosis complex patient iPSC-derived models
Tuberous sclerosis complex (TSC) is a rare neurodevelopmental disorder resulting from autosomal dominant mutations in the TSC1 or TSC2 genes, leading to a hyperactivated mammalian target of rapamycin (mTOR) pathway, and gray and white matter defects in the brain. To study the involvement of neuron-glia interactions in TSC phenotypes, we generated TSC patient induced pluripotent stem cell (iPSC)-derived cortical neuronal and oligodendrocyte (OL) cultures. TSC neuron mono-cultures showed increased network activity, as measured by calcium transients and action potential firing, and increased dendritic branching. However, in co-cultures with OLs, neuronal defects became more apparent, showing cellular hypertrophy and increased axonal density. In addition, TSC neuron-OL co-cultures showed increased OL cell proliferation and decreased OL maturation. Pharmacological intervention with the mTOR regulator rapamycin suppressed these defects. Our patient iPSC-based model, therefore, shows a complex cellular TSC phenotype arising from the interaction of neuronal and glial cells and provides a platform for TSC disease modeling and drug development
Neuron–Glia Interactions in Tuberous Sclerosis Complex Affect the Synaptic Balance in 2D and Organoid Cultures
Tuberous sclerosis complex (TSC) is a genetic disease affecting the brain. Neurological symptoms like epilepsy and neurodevelopmental issues cause a significant burden on patients. Both neurons and glial cells are affected by TSC mutations. Previous studies have shown changes in the excitation/inhibition balance (E/I balance) in TSC. Astrocytes are known to be important for neuronal development, and astrocytic dysfunction can cause changes in the E/I balance. We hypothesized that astrocytes affect the synaptic balance in TSC. TSC patient-derived stem cells were differentiated into astrocytes, which showed increased proliferation compared to control astrocytes. RNA sequencing revealed changes in gene expression, which were related to epidermal growth factor (EGF) signaling and enriched for genes that coded for secreted or transmembrane proteins. Control neurons were cultured in astrocyte-conditioned medium (ACM) of TSC and control astrocytes. After culture in TSC ACM, neurons showed an altered synaptic balance, with an increase in the percentage of VGAT+ synapses. These findings were confirmed in organoids, presenting a spontaneous 3D organization of neurons and glial cells. To conclude, this study shows that TSC astrocytes are affected and secrete factors that alter the synaptic balance. As an altered E/I balance may underlie many of the neurological TSC symptoms, astrocytes may provide new therapeutic targets
Co-culture of Human Stem Cell Derived Neurons and Oligodendrocyte Progenitor Cells
Crosstalk between neurons and oligodendrocytes is important for proper brain functioning. Multiple co-culture methods have been developed to study oligodendrocyte maturation, myelination or the effect of oligodendrocytes on neurons. However, most of these methods contain cells derived from animal models. In the current protocol, we co-culture human neurons with human oligodendrocytes. Neurons and oligodendrocyte precursor cells (OPCs) were differentiated separately from pluripotent stem cells according to previously published protocols. To study neuron-glia cross-Talk, neurons and OPCs were plated in co-culture mode in optimized conditions for additional 28 days, and prepared for OPC maturation and neuronal morphology analysis. To our knowledge, this is one of the first neuron-OPC protocols containing all human cells. Specific neuronal abnormalities not observed in monocultures of Tuberous Sclerosis Complex (TSC) neurons, became apparent when TSC neurons were cocultured with TSC OPCs. These results show that this co-culture system can be used to study human neuron-OPC interactive mechanisms involved in health and disease
Neuron-Glia Interactions in Tuberous Sclerosis Complex Affect the Synaptic Balance in 2D and Organoid Cultures
Tuberous sclerosis complex (TSC) is a genetic disease affecting the brain. Neurological symptoms like epilepsy and neurodevelopmental issues cause a significant burden on patients. Both neurons and glial cells are affected by TSC mutations. Previous studies have shown changes in the excitation/inhibition balance (E/I balance) in TSC. Astrocytes are known to be important for neuronal development, and astrocytic dysfunction can cause changes in the E/I balance. We hypothesized that astrocytes affect the synaptic balance in TSC. TSC patient-derived stem cells were differentiated into astrocytes, which showed increased proliferation compared to control astrocytes. RNA sequencing revealed changes in gene expression, which were related to epidermal growth factor (EGF) signaling and enriched for genes that coded for secreted or transmembrane proteins. Control neurons were cultured in astrocyte-conditioned medium (ACM) of TSC and control astrocytes. After culture in TSC ACM, neurons showed an altered synaptic balance, with an increase in the percentage of VGAT+ synapses. These findings were confirmed in organoids, presenting a spontaneous 3D organization of neurons and glial cells. To conclude, this study shows that TSC astrocytes are affected and secrete factors that alter the synaptic balance. As an altered E/I balance may underlie many of the neurological TSC symptoms, astrocytes may provide new therapeutic targets
Neuron-Glia Interactions in Tuberous Sclerosis Complex Affect the Synaptic Balance in 2D and Organoid Cultures
Tuberous sclerosis complex (TSC) is a genetic disease affecting the brain. Neurological symptoms like epilepsy and neurodevelopmental issues cause a significant burden on patients. Both neurons and glial cells are affected by TSC mutations. Previous studies have shown changes in the excitation/inhibition balance (E/I balance) in TSC. Astrocytes are known to be important for neuronal development, and astrocytic dysfunction can cause changes in the E/I balance. We hypothesized that astrocytes affect the synaptic balance in TSC. TSC patient-derived stem cells were differentiated into astrocytes, which showed increased proliferation compared to control astrocytes. RNA sequencing revealed changes in gene expression, which were related to epidermal growth factor (EGF) signaling and enriched for genes that coded for secreted or transmembrane proteins. Control neurons were cultured in astrocyte-conditioned medium (ACM) of TSC and control astrocytes. After culture in TSC ACM, neurons showed an altered synaptic balance, with an increase in the percentage of VGAT+ synapses. These findings were confirmed in organoids, presenting a spontaneous 3D organization of neurons and glial cells. To conclude, this study shows that TSC astrocytes are affected and secrete factors that alter the synaptic balance. As an altered E/I balance may underlie many of the neurological TSC symptoms, astrocytes may provide new therapeutic targets
Decanoic acid inhibits mTORC1 activity independent of glucose and insulin signaling
Low-glucose and -insulin conditions, associated with ketogenic diets, can reduce the activity of the mechanistic target of rapamycin complex 1 (mTORC1) signaling pathway, potentially leading to a range of positive medical and health-related effects. Here, we determined whether mTORC1 signaling is also a target for decanoic acid, a key component of the medium-chain triglyceride (MCT) ketogenic diet. Using a tractable model system, Dictyostelium, we show that decanoic acid can decrease mTORC1 activity, under conditions of constant glucose and in the absence of insulin, measured by phosphorylation of eukaryotic translation initiation factor 4E-binding protein 1 (4E-BP1). We determine that this effect of decanoic acid is dependent on a ubiquitin regulatory X domain-containing protein, mediating inhibition of a conserved Dictyostelium AAA ATPase, p97, a homolog of the human transitional endoplasmic reticulum ATPase (VCP/p97) protein. We then demonstrate that decanoic acid decreases mTORC1 activity in the absence of insulin and under high-glucose conditions in ex vivo rat hippocampus and in tuberous sclerosis complex (TSC) patient-derived astrocytes. Our data therefore indicate that dietary decanoic acid may provide a new therapeutic approach to down-regulate mTORC1 signaling
Therapeutic potential of human stem cell transplantations for Vanishing White Matter: A quest for the Goldilocks graft
Introduction: Vanishing white matter (VWM) is a leukodystrophy that leads to neurological dysfunction and early death. Astrocytes are indicated as therapeutic target, because of their central role in VWM pathology. Previous cell replacement therapy using primary mouse glial precursors phenotypically improved VWM mice. Aims: The aim of this study was to determine the translational potential of human stem cell-derived glial cell replacement therapy for VWM. We generated various glial cell types from human pluripotent stem cells in order to identify a human cell population that successfully ameliorates disease hallmarks of a VWM mouse model. The effects of cell grafts on motor skills and VWM brain pathology were assessed. Results: Transplantation of human glial precursor populations improved the VWM phenotype. The intrinsic properties of these cells were partially reflected by cell fate post-transplantation, but were also affected by the host microenvironment. Strikingly, the spread of transplanted cells into the white matter versus the gray matter was different when grafted into the VWM brain as compared to a healthy brain. Conclusions: Transplantation of human glial cell populations can have therapeutic effects for VWM. For further translation to the clinic, the microenvironment in the VWM patient brain should be considered as an important moderator of cell replacement therapy