14 research outputs found

    Disruption of Microtubules Sensitizes the DNA Damage-induced Apoptosis Through Inhibiting Nuclear Factor κB (NF-κB) DNA-binding Activity

    Get PDF
    The massive reorganization of microtubule network involves in transcriptional regulation of several genes by controlling transcriptional factor, nuclear factor-kappa B (NF-κB) activity. The exact molecular mechanism by which microtubule rearrangement leads to NF-κB activation largely remains to be identified. However microtubule disrupting agents may possibly act in synergy or antagonism against apoptotic cell death in response to conventional chemotherapy targeting DNA damage such as adriamycin or comptothecin in cancer cells. Interestingly pretreatment of microtubule disrupting agents (colchicine, vinblastine and nocodazole) was observed to lead to paradoxical suppression of DNA damage-induced NF-κB binding activity, even though these could enhance NF-κB signaling in the absence of other stimuli. Moreover this suppressed NF-κB binding activity subsequently resulted in synergic apoptotic response, as evident by the combination with Adr and low doses of microtubule disrupting agents was able to potentiate the cytotoxic action through caspase-dependent pathway. Taken together, these results suggested that inhibition of microtubule network chemosensitizes the cancer cells to die by apoptosis through suppressing NF-κB DNA binding activity. Therefore, our study provided a possible anti-cancer mechanism of microtubule disrupting agent to overcome resistance against to chemotherapy such as DNA damaging agent

    Familial amyloid precursor protein mutants cause caspase-6-dependent but amyloid β-peptide-independent neuronal degeneration in primary human neuron cultures.

    Get PDF
    Although familial Alzheimer disease (AD)-associated autosomal dominant mutants have been extensively studied, little is known about the underlying molecular mechanisms of neurodegeneration induced by these mutants in AD. Wild-type, Swedish or London amyloid precursor protein (APP) transfection in primary human neurons induced neuritic beading, in which several co-expressed proteins, such as enhanced green fluorescent protein, red fluorescent protein (RFP)-tau and RFP-ubiquitin, accumulated. APP-induced neuritic beading was dependent on caspase-6 (Casp6), because it was inhibited with 5 μM z-VEID-fmk or with dominant-negative Casp6. Neuritic beading was independent from APP-mediated amyloid β-peptide (Aβ) production, because the APPM596V (APPMV) mutant, which cannot generate Aβ, still induced Casp6-dependent neuritic beading. However, the beaded neurons underwent Casp6- and Aβ-dependent cell death. These results indicate that overexpression of wild-type or mutant APP causes Casp6-dependent but Aβ-independent neuritic degeneration in human neurons. Because Casp6 is activated early in AD and is involved in axonal degeneration, these results suggest that the inhibition of Casp6 may represent an efficient early intervention against familial forms of AD. Furthermore, these results indicate that removing Aβ without inhibiting Casp6 may have little effect in preventing the progressive dementia associated with sporadic or familial AD

    The N-Terminal Domain of the Drosophila Retinoblastoma Protein Rbf1 Interacts with ORC and Associates with Chromatin in an E2F Independent Manner

    Get PDF
    The retinoblastoma (Rb) tumor suppressor protein can function as a DNA replication inhibitor as well as a transcription factor. Regulation of DNA replication may occur through interaction of Rb with the origin recognition complex (ORC).We characterized the interaction of Drosophila Rb, Rbf1, with ORC. Using expression of proteins in Drosophila S2 cells, we found that an N-terminal Rbf1 fragment (amino acids 1-345) is sufficient for Rbf1 association with ORC but does not bind to dE2F1. We also found that the C-terminal half of Rbf1 (amino acids 345-845) interacts with ORC. We observed that the amino-terminal domain of Rbf1 localizes to chromatin in vivo and associates with chromosomal regions implicated in replication initiation, including colocalization with Orc2 and acetylated histone H4.Our results suggest that Rbf1 can associate with ORC and chromatin through domains independent of the E2F binding site. We infer that Rbf1 may play a role in regulating replication directly through its association with ORC and/or chromatin factors other than E2F. Our data suggest an important role for retinoblastoma family proteins in cell proliferation and tumor suppression through interaction with the replication initiation machinery

    The role of TREX in gene expression and disease

    Full text link

    Melanocytes in conditional Rb-/- mice are normal in vivo but exhibit proliferation and pigmentation defects in vitro

    No full text
    The function of the retinoblastoma tumour suppressor (Rb1), and the pocket protein family in general, has been implicated as an important focal point for deregulation in many of the molecular pathways mutated in melanoma. We have focused on the role of Rb1 in mouse melanocyte homeostasis using gene targeting and Cre/loxP mediated tissue-specific deletion. We show that constitutive Cre-mediated ablation of Rb1 exon 2 prevents the production of Rb1 and recapitulates the phenotype encountered in other Rb1 knockout mouse models. Mice with conditional melanocyte-specific ablation of Rb1 manifest overtly normal pigmentation and are bereft of melanocytic hyperproliferative defects or apoptosis-induced depigmentation. Histologically, these mice have melanocyte morphology and distribution comparable with control littermates. In contrast, Rb1-null melanocytes removed from their in vivo micro-environment and cultured in vitro display some of the characteristics associated with a transformed phenotype. They proliferate at a heightened rate when compared with control melanocytes and have a decreased requirement for mitogens. With progressive culture the cells depigment at relatively early passage and display a gross morphology which, whilst reminiscent of early passage melanocytes, is generally different to equivalent passage control cells. These results indicate that Rb1 is dispensable for in vivo melanocyte homeostasis when its ablation is targeted from the melanoblast stage onwards, however, when cultured in vitro, Rb1 loss increases melanocyte growth but the cells are not fully transformed
    corecore