144 research outputs found
Luminescence properties of closely packed organic color centers grafted on a carbon nanotube
We report on the photo-luminescence of pairs of organic color centers in
single-wall carbon nanotubes grafted with 3,5 dichlorobenzene. Using various
techniques such as intensity correlations, super-localization microscopy or
luminescence excitation spectroscopy, we distinguish two pairs of color centers
grafted on the same nanotube; the distance between the pairs is on the order of
several hundreds of nanometers. In contrast, by studying the strong temporal
correlations in the spectral diffusion in the framework of photo-induced Stark
effect, we can estimate the distance within each pair to be of the order of a
few nanometers. Finally, the electronic population dynamics is investigated
using time-resolved luminescence and saturation measurements, showing a
biexponential decay with a fast overall recombination (compatible with a fast
population transfer between the color centers within a pair) and a weak delayed
repopulation of the traps possibly due to the diffusion of excitons along the
tube axis
Effect of Source, Surfactant, and Deposition Process on Electronic Properties of Nanotube Arrays
The electronic properties of arrays of carbon nanotubes from several different sources differing in the manufacturing process used with a variety of average properties such as length, diameter, and chirality are studied. We used several common surfactants to disperse each of these nanotubes and then deposited them on Si wafers from their aqueous solutions using dielectrophoresis. Transport measurements were performed to compare and determine the effect of different surfactants, deposition processes, and synthesis processes on nanotubes synthesized using CVD, CoMoCAT, laser ablation, and HiPCO
The Unique Origin of Colors of Armchair Carbon Nanotubes
The colors of suspended metallic colloidal particles are determined by their
size-dependent plasma resonance, while those of semiconducting colloidal
particles are determined by their size-dependent band gap. Here, we present a
novel case for armchair carbon nanotubes, suspended in aqueous medium, for
which the color depends on their size-dependent excitonic resonance, even
though the individual particles are metallic. We observe distinct colors of a
series of armchair-enriched nanotube suspensions, highlighting the unique
coloration mechanism of these one-dimensional metals.Comment: 4 pages, 3 figure
Redondoviridae: High Prevalence and Possibly Chronic Shedding in Human Respiratory Tract, But No Zoonotic Transmission
Redondoviridae is a recently discovered DNA virus family consisting of two species, vientovirus and brisavirus. Here we used PCR amplification and sequencing to characterize redondoviruses in nasal/throat swabs collected longitudinally from a cohort of 58 individuals working with animals in Vietnam. We additionally analyzed samples from animals to which redondovirus DNA-positive participants were exposed. Redondoviruses were detected in approximately 60% of study participants, including 33% (30/91) of samples collected during episodes of acute respiratory disease and in 50% (29/58) of baseline samples (with no respiratory symptoms). Vientovirus (73%; 24/33) was detected more frequently in samples than brisaviruses (27%; 9/33). In the 23 participants with at least 2 redondovirus-positive samples among their longitudinal samples, 10 (43.5%) had identical redondovirus replication-gene sequences detected (sampling duration: 35–132 days). We found no identical redondovirus replication genes in samples from different participants, and no redondoviruses were detected in 53 pooled nasal/throat swabs collected from domestic animals. Phylogenetic analysis described no large-scale geographical clustering between viruses from Vietnam, the US, Spain, and China, indicating that redondoviruses are highly genetically diverse and have a wide geographical distribution. Collectively, our study provides novel insights into the Redondoviridae family in humans, describing a high prevalence, potentially associated with chronic shedding in the respiratory tract with lack of evidence of zoonotic transmission from close animal contacts. The tropism and potential pathogenicity of this viral family remain to be determined
Recommended from our members
The Virome of Acute Respiratory Diseases in Individuals at Risk of Zoonotic Infections
The ongoing coronavirus disease 2019 (COVID-19) pandemic emphasizes the need to actively study the virome of unexplained respiratory diseases. We performed viral metagenomic next-generation sequencing (mNGS) analysis of 91 nasal-throat swabs from individuals working with animals and with acute respiratory diseases. Fifteen virus RT-PCR-positive samples were included as controls, while the other 76 samples were RT-PCR negative for a wide panel of respiratory pathogens. Eukaryotic viruses detected by mNGS were then screened by PCR (using primers based on mNGS-derived contigs) in all samples to compare viral detection by mNGS versus PCR and assess the utility of mNGS in routine diagnostics. mNGS identified expected human rhinoviruses, enteroviruses, influenza A virus, coronavirus OC43, and respiratory syncytial virus (RSV) A in 13 of 15 (86.7%) positive control samples. Additionally, rotavirus, torque teno virus, human papillomavirus, human betaherpesvirus 7, cyclovirus, vientovirus, gemycircularvirus, and statovirus were identified through mNGS. Notably, complete genomes of novel cyclovirus, gemycircularvirus, and statovirus were genetically characterized. Using PCR screening, the novel cyclovirus was additionally detected in 5 and the novel gemycircularvirus in 12 of the remaining samples included for mNGS analysis. Our studies therefore provide pioneering data of the virome of acute-respiratory diseases from individuals at risk of zoonotic infections. The mNGS protocol/pipeline applied here is sensitive for the detection of a variety of viruses, including novel ones. More frequent detections of the novel viruses by PCR than by mNGS on the same samples suggests that PCR remains the most sensitive diagnostic test for viruses whose genomes are known. The detection of novel viruses expands our understanding of the respiratory virome of animal-exposed humans and warrant further studies
- …