8 research outputs found

    The genetic architecture of the human cerebral cortex

    Get PDF
    The cerebral cortex underlies our complex cognitive capabilities, yet little is known about the specific genetic loci that influence human cortical structure. To identify genetic variants that affect cortical structure, we conducted a genome-wide association meta-analysis of brain magnetic resonance imaging data from 51,665 individuals. We analyzed the surface area and average thickness of the whole cortex and 34 regions with known functional specializations. We identified 199 significant loci and found significant enrichment for loci influencing total surface area within regulatory elements that are active during prenatal cortical development, supporting the radial unit hypothesis. Loci that affect regional surface area cluster near genes in Wnt signaling pathways, which influence progenitor expansion and areal identity. Variation in cortical structure is genetically correlated with cognitive function, Parkinson's disease, insomnia, depression, neuroticism, and attention deficit hyperactivity disorder

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Patient and stakeholder engagement learnings: PREP-IT as a case study

    Get PDF

    Revealing Cutinases’ Capabilities as Enantioselective Catalysts

    Full text link
    The specific activity and enantioselectivity of immobilized cutinases from Humicola insolens (HiC) and Aspergillus oryzae (AoC) were compared with those of Lipase B from Candida antarctica (CALB) for a series of 1-phenylethanol (1-PEA) structural analogues. The aim was to understand their catalytic behavior by rationally studying three structural elements of the substrates: the length of the alkyl chain, the position of methylation of the aromatic ring, and the aromatic character of the ring. All enzymes were immobilized on the macroporous support Lewatit VP OC 1600 at loadings of ∼10% w/w. Docking studies revealed structural features of the enzymes that led to activity differences. All three enzymes exhibit (<i>R</i>)-selectivity. AoC, due to its more open and accessible active site, possesses high activity that exceeds in most cases that of HiC and CALB. By increasing the substrate’s alkyl chain length from methyl to <i>n</i>-propyl, the activity for the (<i>R</i>)-enantiomer of all three enzymes decreased significantly (≥70%), while the enantioselectivity of both cutinases was larger than that of CALB for the bulkier substrate. Methylation of the ring in the <i>ortho</i>-position led to loss of activity (≥55%); however, AoC retained substantial activity. For all three enzymes, the planar character of the substrate phenyl ring is crucial for stabilizing the substrate in the active sites via π–π stacking. HiC displays high enantioselectivity with most substrates, despite its wide active site, due to a “bottleneck” produced over the catalytic serine from Leu66 and Ile169

    Cytomegalovirus US28 regulates cellular EphA2 to maintain viral latency.

    Full text link
    Cytomegalovirus (CMV) reactivation from latency following immune dysregulation remains a serious risk for patients, often causing substantial morbidity and mortality. Here, we demonstrate the CMV-encoded G protein-coupled receptor, US28, in coordination with cellular Ephrin receptor A2, attenuates mitogen-activated protein kinase signaling, thereby limiting viral replication in latently infected primary monocytes. Furthermore, treatment of latently infected primary monocytes with dasatinib, a Food and Drug Association-approved kinase inhibitor used to treat a subset of leukemias, results in CMV reactivation. These ex vivo data correlate with our retrospective analyses of the Explorys electronic health record database, where we find dasatinib treatment is associated with a significant risk of CMV-associated disease (odds ratio 1.58, P = 0.0004). Collectively, our findings elucidate a signaling pathway that plays a central role in the balance between CMV latency and reactivation and identifies a common therapeutic cancer treatment that elevates the risk of CMV-associated disease

    Patient and stakeholder engagement learnings: PREP-IT as a case study

    Full text link

    Implementing stakeholder engagement to explore alternative models of consent: An example from the PREP-IT trials

    Full text link
    Introduction: Cluster randomized crossover trials are often faced with a dilemma when selecting an optimal model of consent, as the traditional model of obtaining informed consent from participant's before initiating any trial related activities may not be suitable. We describe our experience of engaging patient advisors to identify an optimal model of consent for the PREP-IT trials. This paper also examines surrogate measures of success for the selected model of consent. Methods: The PREP-IT program consists of two multi-center cluster randomized crossover trials that engaged patient advisors to determine an optimal model of consent. Patient advisors and stakeholders met regularly and reached consensus on decisions related to the trial design including the model for consent. Patient advisors provided valuable insight on how key decisions on trial design and conduct would be received by participants and the impact these decisions will have. Results: Patient advisors, together with stakeholders, reviewed the pros and cons and the requirements for the traditional model of consent, deferred consent, and waiver of consent. Collectively, they agreed upon a deferred consent model, in which patients may be approached for consent after their fracture surgery and prior to data collection. The consent rate in PREP-IT is 80.7%, and 0.67% of participants have withdrawn consent for participation. Discussion: Involvement of patient advisors in the development of an optimal model of consent has been successful. Engagement of patient advisors is recommended for other large trials where the traditional model of consent may not be optimal
    corecore