4,200 research outputs found

    Quantum turbulence at finite temperature: the two-fluids cascade

    Get PDF
    To model isotropic homogeneous quantum turbulence in superfluid helium, we have performed Direct Numerical Simulations (DNS) of two fluids (the normal fluid and the superfluid) coupled by mutual friction. We have found evidence of strong locking of superfluid and normal fluid along the turbulent cascade, from the large scale structures where only one fluid is forced down to the vorticity structures at small scales. We have determined the residual slip velocity between the two fluids, and, for each fluid, the relative balance of inertial, viscous and friction forces along the scales. Our calculations show that the classical relation between energy injection and dissipation scale is not valid in quantum turbulence, but we have been able to derive a temperature--dependent superfluid analogous relation. Finally, we discuss our DNS results in terms of the current understanding of quantum turbulence, including the value of the effective kinematic viscosity

    Evolution of a Network of Vortex Loops in HeII. Exact Solution of the "Rate Equation"

    Full text link
    Evolution of a network of vortex loops in HeII due to the fusion and breakdown of vortex loops is studied. We perform investigation on the base of the ''rate equation'' for the distribution function n(l)n(l) of number of loops of length ll proposed by Copeland with coauthors. By using the special ansatz in the ''collision'' integral we have found the exact power-like solution of ''kinetic equation'' in stationary case. That solution is the famous equilibrium distribution n(l)l5/2n(l)\varpropto l^{-5/2} obtained earlier in numerical calculations. Our result, however, is not equilibrium, but on the contrary, it describes the state with two mutual fluxes of the length (or energy) in space of the vortex loop sizes. Analyzing this solution we drew several results on the structure and dynamics of the vortex tangle in the superfluid turbulent helium. In particular, we obtained that the mean radius of the curvature is of order of interline space. We also obtain that the decay of the vortex tangle obeys the Vinen equation, obtained earlier phenomenologically. We evaluate also the full rate of reconnection events. PACS-number 67.40Comment: 4 pages, submitted to PR

    Reconnection and acoustic emission of quantized vortices in superfluid by the numerical analysis of the Gross-Pitaevskii equation

    Full text link
    We study numerically the reconnection of quantized vortices and the concurrent acoustic emission by the analysis of the Gross-Pitaevskii equation. Two quantized vortices reconnect following the process similar to classical vortices; they approach, twist themselves locally so that they become anti-parallel at the closest place, reconnect and leave separately.The investigation of the motion of the singular lines where the amplitude of the wave function vanishes in the vortex cores confirms that they follow the above scenario by reconnecting at a point. This reconnection is not contradictory to the Kelvin's circulation theorem, because the potential of the superflow field becomes undefined at the reconnection point. When the locally anti-parallel part of the vortices becomes closer than the healing length, it moves with the velocity comparable to the sound velocity, emits the sound waves and leads to the pair annihilation or reconnection; this phenomena is concerned with the Cherenkov resonance. The vortices are broken up to smaller vortex loops through a series of reconnection, eventually disappearing with the acoustic emission. This may correspond to the final stage of the vortex cascade process proposed by Feynman. The change in energy components, such as the quantum, the compressible and incompressible kinetic energy is analyzed for each dynamics. The propagation of the sound waves not only appears in the profile of the amplitude of the wave function but also affects the field of its phase, transforming the quantum energy due to the vortex cores to the kinetic energy of the phase field.Comment: 11 pages, 16 figures, LaTe

    Unexpected impact of D waves in low-energy neutral pion photoproduction from the proton and the extraction of multipoles

    Full text link
    Contributions of DD waves to physical observables for neutral pion photoproduction from the proton in the near-threshold region are studied and means to isolate them are proposed. Various approaches to describe the multipoles are employed --a phenomenological one, a unitary one, and heavy baryon chiral perturbation theory. The results of these approaches are compared and found to yield essentially the same answers. DD waves are seen to enter together with SS waves in a way that any means which attempt to obtain the E0+E_{0+} multipole accurately must rely on knowledge of DD waves and that consequently the latter cannot be dismissed in analyses of low-energy pion photoproduction. It is shown that DD waves have a significant impact on double-polarization observables that can be measured. This importance of DD waves is due to the soft nature of the SS wave and is a direct consequence of chiral symmetry and the Nambu--Goldstone nature of the pion. FF-wave contributions are shown to be negligible in the near-threshold region.Comment: 38 pages, 13 figures, 19 tables. Version to be published in Physical Review

    Coherent laminar and turbulent motion of toroidal vortex bundles

    Full text link
    Motivated by experiments performed in superfluid helium, we study numerically the motion of toroidal bundles of vortex filaments in an inviscid fluid. We find that the evolution of these large-scale vortex structures involves the generalised leapfrogging of the constituent vortex rings. Despite three dimensional perturbations in the form of Kelvin waves and vortex reconnections, toroidal vortex bundles retain their coherence over a relatively large distance (compared to their size), in agreement with experimental observations.Comment: 22 pages, 12 figure

    A Kelvin-wave cascade on a vortex in superfluid 4^4He at a very low temperature

    Full text link
    A study by computer simulation is reported of the behaviour of a quantized vortex line at a very low temperature when there is continuous excitation of low-frequency Kelvin waves. There is no dissipation except by phonon radiation at a very high frequency. It is shown that non-linear coupling leads to a net flow of energy to higher wavenumbers and to the development of a simple spectrum of Kelvin waves that is insensitive to the strength and frequency of the exciting drive. The results are likely to be relevant to the decay of turbulence in superfluid 4^4He at very low temperatures

    Vortex lattices in a stirred Bose-Einstein condensate

    Full text link
    We stir with a focused laser beam a Bose-Einstein condensate of 87^{87}Rb atoms confined in a magnetic trap. We observe the formation of a single vortex for a stirring frequency exceeding a critical value. At larger rotation frequencies we produce states of the condensate for which up to eleven vortices are simultaneously present. We present measurements of the decay of a vortex array once the stirring laser beam is removed

    Energy-dependent effective interactions for dilute many-body systems

    Full text link
    We address the issue of determining an effective two-body interaction for mean-field calculations of energies of many-body systems. We show that the effective interaction is proportional to the phase shift, and demonstrate this result in the quasiclassical approximation when there is a trapping potential in addition to the short-range interaction between a pair of particles. We calculate numerically energy levels for the case of an interaction with a short-range square-well and a harmonic trapping potential and show that the numerical results agree well with the analytical expression. We derive a generalized Gross--Pitaevskii equation which includes effective range corrections and discuss the form of the electron--atom effective interaction to be used in calculations of Rydberg atoms and molecules.Comment: 6 pages, 2 figure

    Interferometric detection of a single vortex in a dilute Bose-Einstein condensate

    Full text link
    Using two radio frequency pulses separated in time we perform an amplitude division interference experiment on a rubidium Bose-Einstein condensate. The presence of a quantized vortex, which is nucleated by stirring the condensate with a laser beam, is revealed by a dislocation in the fringe pattern.Comment: 4 pages, 4 figure
    corecore