4 research outputs found

    Acute bilateral anterior circulation stroke due to anomalous cerebral vasculature: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Simultaneous bilateral cerebrovascular infarction is relatively rare and its initial presentation as a space-occupying lesion is extremely uncommon. However, bilateral infarction can result from unilateral occlusion of anomalous cerebral vasculature.</p> <p>Case presentation</p> <p>We report the case of a man presenting with lower limb weakness and aphasia of acute onset with initial computerised tomography suggesting bifrontal neoplasm. However, further investigation confirmed bilateral anterior cerebral artery territory infarction with a hypoplastic left anterior cerebral artery with the right anterior cerebral artery supplying both frontal lobes (an anatomical variant). We present the clinical and diagnostic features of this presentation and attempt to ascertain, by reviewing existent medical literature, the frequency and patterns of structural variations in cerebral vasculature.</p> <p>Conclusion</p> <p>Simultaneous bilateral cerebral infarction can be the result of a unilateral cerebral artery occlusion and this can potentially mimic a space-occupying lesion. Anomalies of cerebral vasculature are not as rare as is usually believed and this should be borne in mind when investigating unusual presentations of cerebrovascular infarction.</p

    Comparison of Covered Laser-cut and Braided Respiratory Stents: From Bench to Pre-Clinical Testing

    No full text
    Lung cancer patients often suffer from severe airway stenosis, the symptoms of which can be relieved by the implantation of stents. Different respiratory stents are commercially available, but the impact of their mechanical performance on tissue responses is not well understood. Two novel laser-cut and hand-braided nitinol stents, partially covered with polycarbonate urethane, were bench tested and implanted in Rhön sheep for 6 weeks. Bench testing highlighted differences in mechanical behavior: the laser-cut stent showed little foreshortening when crimped to a target diameter of 7.5 mm, whereas the braided stent elongated by more than 50%. Testing also revealed that the laser-cut stent generally exerted higher radial resistive and chronic outward forces than the braided stent, but the latter produced significantly higher radial resistive forces at diameters below 9 mm. No migration was observed for either stent type in vivo. In terms of granulation, most stents exerted a low to medium tissue response with only minimal formation of granulation tissue. We have developed a mechanical and in vivo framework to compare the behavior of different stent designs in a large animal model, providing data, which may be employed to improve current stent designs and to achieve better treatment options for lung cancer patients
    corecore