245 research outputs found
Assessment Courses in Counselor Education
Pre- and post-surveys of an assessment class within the counselor education curricula were used to assess the thoughts, feelings, and concerns of counselors-in-training enrolled in the class. A mixed-methods study was con-ducted to assess themes in responses and examine comfort and competence with the concept of assessment. Results provide counselor educators insight into possible factors that affect and alter the perspective of counselors-in-training before and after taking an assessment class. Recommendations and implications for future re-search are discussed
Accurate PCR detection of influenza A/B and respiratory syncytial viruses by use of Cepheid Xpert Flu+RSV Xpress Assay in point-of-care settings: Comparison to Prodesse ProFlu+
ABSTRACT
The Xpert Flu+RSV Xpress Assay is a fast, automated
in vitro
diagnostic test for qualitative detection and differentiation of influenza A and B viruses and respiratory syncytial virus (RSV) performed on the Cepheid GeneXpert Xpress System. The objective of this study was to establish performance characteristics of the Xpert Flu+RSV Xpress Assay compared to those of the Prodesse ProFlu+ real-time reverse transcription-PCR (RT-PCR) assay (ProFlu+) for the detection of influenza A and B viruses as well as RSV in a Clinical Laboratory Improvement Amendments (CLIA)-waived (CW) setting. Overall, the assay, using fresh and frozen nasopharyngeal (NP) swabs, demonstrated high concordance with results of the ProFlu+ assay in the combined CW and non-CW settings with positive percent agreements (PPA) (100%, 100%, and 97.1%) and negative percent agreements (NPA) (95.2%, 99.5%, and 99.6%) for influenza A and B viruses and RSV, respectively. In conclusion, this multicenter study using the Cepheid Xpert Flu+RSV Xpress Assay demonstrated high sensitivities and specificities for influenza A and B viruses and RSV in ∼60 min for use at the point-of-care in the CW setting.
</jats:p
Arsenal of plant cell wall degrading enzymes reflects host preference among plant pathogenic fungi
<p>Abstract</p> <p>Background</p> <p>The discovery and development of novel plant cell wall degrading enzymes is a key step towards more efficient depolymerization of polysaccharides to fermentable sugars for the production of liquid transportation biofuels and other bioproducts. The industrial fungus <it>Trichoderma reesei </it>is known to be highly cellulolytic and is a major industrial microbial source for commercial cellulases, xylanases and other cell wall degrading enzymes. However, enzyme-prospecting research continues to identify opportunities to enhance the activity of <it>T. reesei </it>enzyme preparations by supplementing with enzymatic diversity from other microbes. The goal of this study was to evaluate the enzymatic potential of a broad range of plant pathogenic and non-pathogenic fungi for their ability to degrade plant biomass and isolated polysaccharides.</p> <p>Results</p> <p>Large-scale screening identified a range of hydrolytic activities among 348 unique isolates representing 156 species of plant pathogenic and non-pathogenic fungi. Hierarchical clustering was used to identify groups of species with similar hydrolytic profiles. Among moderately and highly active species, plant pathogenic species were found to be more active than non-pathogens on six of eight substrates tested, with no significant difference seen on the other two substrates. Among the pathogenic fungi, greater hydrolysis was seen when they were tested on biomass and hemicellulose derived from their host plants (commelinoid monocot or dicot). Although <it>T. reesei </it>has a hydrolytic profile that is highly active on cellulose and pretreated biomass, it was less active than some natural isolates of fungi when tested on xylans and untreated biomass.</p> <p>Conclusions</p> <p>Several highly active isolates of plant pathogenic fungi were identified, particularly when tested on xylans and untreated biomass. There were statistically significant preferences for biomass type reflecting the monocot or dicot host preference of the pathogen tested. These highly active fungi are promising targets for identification and characterization of novel cell wall degrading enzymes for industrial applications.</p
Efficacy of Low-Dose Amitriptyline for Chronic Low Back Pain:A Randomized Clinical Trial
Importance: Antidepressants at low dose are commonly prescribed for the management of chronic low back pain and their use is recommended in international clinical guidelines. However, there is no evidence for their efficacy. Objective: To examine the efficacy of a low-dose antidepressant compared with an active comparator in reducing pain, disability, and work absence and hindrance in individuals with chronic low back pain. Design, Setting, and Participants: A double-blind, randomized clinical trial with a 6-month follow-up of adults with chronic, nonspecific, low back pain who were recruited through hospital/medical clinics and advertising was carried out. Intervention: Low-dose amitriptyline (25 mg/d) or an active comparator (benztropine mesylate, 1 mg/d) for 6 months. Main Outcomes and Measures: The primary outcome was pain intensity measured at 3 and 6 months using the visual analog scale and Descriptor Differential Scale. Secondary outcomes included disability assessed using the Roland Morris Disability Questionnaire and work absence and hindrance assessed using the Short Form Health and Labour Questionnaire. Results: Of the 146 randomized participants (90 [61.6%] male; mean [SD] age, 54.8 [13.7] years), 118 (81%) completed 6-month follow-up. Treatment with low-dose amitriptyline did not result in greater pain reduction than the comparator at 6 (adjusted difference, -7.81; 95% CI, -15.7 to 0.10) or 3 months (adjusted difference, -1.05; 95% CI, -7.87 to 5.78), independent of baseline pain. There was no statistically significant difference in disability between the groups at 6 months (adjusted difference, -0.98; 95% CI, -2.42 to 0.46); however, there was a statistically significant improvement in disability for the low-dose amitriptyline group at 3 months (adjusted difference, -1.62; 95% CI, -2.88 to -0.36). There were no differences between the groups in work outcomes at 6 months (adjusted difference, absence: 1.51; 95% CI, 0.43-5.38; hindrance: 0.53; 95% CI, 0.19-1.51), or 3 months (adjusted difference, absence: 0.86; 95% CI, 0.32-2.31; hindrance: 0.78; 95% CI, 0.29-2.08), or in the number of participants who withdrew owing to adverse events (9 [12%] in each group; χ2 = 0.004; P =.95). Conclusions and Relevance: This trial suggests that amitriptyline may be an effective treatment for chronic low back pain. There were no significant improvements in outcomes at 6 months, but there was a reduction in disability at 3 months, an improvement in pain intensity that was nonsignificant at 6 months, and minimal adverse events reported with a low-dose, modest sample size and active comparator. Although large-scale clinical trials that include dose escalation are needed, it may be worth considering low-dose amitriptyline if the only alternative is an opioid. Trial Registration: ANZCTR: ACTRN12612000131853
Association of mutations with morphological dysplasia in de novo acute myeloid leukemia without 2016 WHO Classification-defined cytogenetic abnormalities
Despite improvements in our understanding of the molecular basis of acute myeloid leukemia (AML), the association between genetic mutations with morphological dysplasia remains unclear. In this study, we evaluated and scored dysplasia in bone marrow (BM) specimens from 168 patients with de novo AML; none of these patients had cytogenetic abnormalities according to the 2016 World Health Organization Classification. We then performed targeted sequencing of diagnostic BM aspirates for recurrent mutations associated with myeloid malignancies. We found that cohesin pathway mutations [q (FDR-adjusted P)=0.046] were associated with a higher degree of megakaryocytic dysplasia and STAG2 mutations were marginally associated with greater myeloid lineage dysplasia (q=0.052). Frequent megakaryocytes with separated nuclear lobes were more commonly seen among cases with cohesin pathway mutations (q=0.010) and specifically in those with STAG2 mutations (q=0.010), as well as NPM1 mutations (q=0.022 when considering the presence of any vs. no megakaryocytes with separated nuclear lobes). RAS pathway mutations (q=0.006) and FLT3-ITD (q=0.006) were significantly more frequent in cases without evaluable erythroid cells. In univariate analysis of the 153 patients treated with induction chemotherapy, NPM1 mutations were associated with longer event-free survival (EFS) (P=0.042), while RUNX1 (P=0.042), NF1 (P=0.040), frequent micromegakaryocytes (P=0.018) and presence of a subclone (P=0.002) were associated with shorter EFS. In multivariable modeling, NPM1 was associated with longer EFS, while presence of a subclone and frequent micromegakaryocytes remained significantly associated with shorter EFS
Insights into Adaptations to a Near- Obligate Nematode Endoparasitic Lifestyle from the Finished Genome of Drechmeria coniospora
Nematophagous fungi employ three distinct predatory strategies: nematode trapping, parasitism of females and eggs, and endoparasitism. While endoparasites play key roles in controlling nematode populations in nature, their application for integrated pest management is hindered by the limited understanding of their biology. We present a comparative analysis of a high quality finished genome assembly of Drechmeria coniospora, a model endoparasitic nematophagous fungus, integrated with a transcriptomic study. Adaptation of D. coniospora to its almost completely obligate endoparasitic lifestyle led to the simplification of many orthologous gene families involved in the saprophytic trophic mode, while maintaining orthologs of most known fungal pathogen-host interaction proteins, stress response circuits and putative effectors of the small secreted protein type. The need to adhere to and penetrate the host cuticle led to a selective radiation of surface proteins and hydrolytic enzymes. Although the endoparasite has a simplified secondary metabolome, it produces a novel peptaibiotic family that shows antibacterial, antifungal and nematicidal activities. Our analyses emphasize the basic malleability of the D. coniospora genome: loss of genes advantageous for the saprophytic lifestyle; modulation of elements that its cohort species utilize for entomopathogenesis; and expansion of protein families necessary for the nematode endoparasitic lifestyle
Association of Body Mass Index with DNA Methylation and Gene Expression in Blood Cells and Relations to Cardiometabolic Disease: A Mendelian Randomization Approach
Background
The link between DNA methylation, obesity, and adiposity-related diseases in the general population remains uncertain.
Methods and Findings
We conducted an association study of body mass index (BMI) and differential methylation for over 400,000 CpGs assayed by microarray in whole-blood-derived DNA from 3,743 participants in the Framingham Heart Study and the Lothian Birth Cohorts, with independent replication in three external cohorts of 4,055 participants. We examined variations in whole blood gene expression and conducted Mendelian randomization analyses to investigate the functional and clinical relevance of the findings. We identified novel and previously reported BMI-related differential methylation at 83 CpGs that replicated across cohorts; BMI-related differential methylation was associated with concurrent changes in the expression of genes in lipid metabolism pathways. Genetic instrumental variable analysis of alterations in methylation at one of the 83 replicated CpGs, cg11024682 (intronic to sterol regulatory element binding transcription factor 1 [SREBF1]), demonstrated links to BMI, adiposity-related traits, and coronary artery disease. Independent genetic instruments for expression of SREBF1 supported the findings linking methylation to adiposity and cardiometabolic disease. Methylation at a substantial proportion (16 of 83) of the identified loci was found to be secondary to differences in BMI. However, the cross-sectional nature of the data limits definitive causal determination.
Conclusions
We present robust associations of BMI with differential DNA methylation at numerous loci in blood cells. BMI-related DNA methylation and gene expression provide mechanistic insights into the relationship between DNA methylation, obesity, and adiposity-related diseases
- …