104 research outputs found

    Root Growth, Water and Nitrogen Use Efficiencies in Winter Wheat Under Different Irrigation and Nitrogen Regimes in North China Plain

    Get PDF
    Excessive nitrogen (N) application combined with water shortage has a negative effect on crop production, particularly wheat (Triticum aestivum L.) production in the North China Plain. This study examined root growth and water and nitrogen use efficiencies in wheat grown on loam soil in the North China Plain, from 2012 to 2014 using a fixed-position experiment initiated in 2010. The experiment followed a completely randomized split-plot design with four replications, taking irrigation [no irrigation (W0) versus irrigation at jointing plus flowering (W2)] as the main plot and N treatment (0, 180, 240, and 300 kg N ha-1) as the subplot. Compared with W0, W2 increased grain yield and root weight density (RWD) by up to 91.3 and 57.7% in 2012–2013, and 15.5 and 43.0% in 2013–2014, respectively, across all N application rates. Irrigation had no effect on grain water use efficiency (WUEY), but caused a decrease in biomass WUE at vegetative growth stage (WUEF) and at grain-filling stage (WUEM). Significant improvements in grain yield and biomass WUE during vegetative growth stage, and reductions in nitrogen-use efficiency (NUE) and RWD, were observed with increasing N application. Compared with non-N treatment, N treatment increased yield by up to 98.9 and 93.7% in 2012–2013 and 2013–2014, respectively, decreasing RWD by 12.0 and 16.9%. Correlation analysis further revealed that RWD was positively correlated with grain yield, evapotranspiration (ET) and NUE. NUE was also positively correlated with nitrogen uptake efficiency (UPE). Overall, the findings suggest that optimal N application improves NUE by increasing above–ground nitrogen uptake as a result of optimized RWD and a synchronous increase in WUE, thus increasing yield. Under the experimental conditions, an N application rate of 240 kg N ha-1 plus irrigation at jointing and flowering is recommended

    Determining the Optimal N Input to Improve Grain Yield and Quality in Winter Wheat With Reduced Apparent N Loss in the North China Plain

    Get PDF
    Excessive or improper nitrogen (N) application rates negatively affect crop production and thereby environmental quality, particularly for winter wheat production in the North China Plain. Therefore, it is very important to optimize N fertilizer input to balance grain yield, environmental risk, and benefits under irrigated conditions. Three long-term stationary field experiments including five N levels, from 0 to 300 kg ha-1 [0 (N0), 90 (N90), 180 (N180), 240 (N240), and 300 (N300) kg ha-1] were carried out to investigate the effects of N regime on wheat yield, photosynthesis, and N balance at different sites. The grain yield and protein content increased quadratically with N rate, and the maximum values were 8087 kg ha-1 and 13.9% at N application rates of 250 and 337 kg N ha-1, respectively. N application increased the photosynthetic fluorescence parameters (Pn, Gs, and Tr) and N metabolism enzyme activities (NR and GS) which then increased grain yield. The leaching of soil nitrate into the deeper soil layers ( > 100 cm) increased with higher N fertilization and experimental years. The partial factor productivity (PFPN) was decreased by N because the apparent N loss increased with N application rate. In order to balance grain yield, N use efficiency (NUE), and N loss, the recommended N rate should be 120–171 kg N ha-1, and the corresponding yields and apparent N loss were 7278–7787 ka ha-1 and 22–37 kg ha-1, respectively

    Cyclooxygenase-2 Induction by Arsenite through the IKKβ/NFκB Pathway Exerts an Antiapoptotic Effect in Mouse Epidermal Cl41 cells

    Get PDF
    BACKGROUND: Arsenic contamination has become a major public health concern worldwide. Epidemiologic data show that long-term arsenic exposure results in the risk of skin cancer. However, the mechanisms underlying carcinogenic effects of arsenite on skin remain to be studied. OBJECTIVES: In the present study we evaluated cyclooxygenase-2 (COX-2) expression, the signaling pathways leading to COX-2 induction, and its antiapoptotic function in the response to arsenite exposure in mouse epidermal JB6 Cl41 cells. METHODS: We used the luciferase reporter assay and Western blots to determine COX-2 induction by arsenite. We utilized dominant negative mutant, genetic knockout, gene knockdown, and gene overexpression approaches to elucidate the signaling pathway involved in COX-2 induction and its protective effect on cell apoptosis. RESULTS: The induction of COX-2 by arsenite was inhibited in Cl41 cells transfected with IKKβ-KM, a dominant mutant inhibitor of kβ (Ikβ) kinase (IKKβ), and in IKKβ-knockout (IKKβ(−/−)) mouse embryonic fibroblasts (MEFs). IKKβ/nuclear factor κB (NFκB) pathway-mediated COX-2 induction exerted an antiapoptotic effect on the cells exposed to arsenite because cell apoptosis was significantly enhanced in the Cl41 cells transfected with IKKβ-KM or COX-2 small interference RNA (siCOX-2). In addition, IKKβ(−/−) MEFs stably transfected with COX-2 showed more resistance to arsenite-induced apoptosis compared with the same control vector–transfected cells. CONCLUSIONS: These results demonstrate that arsenite exposure can induce COX-2 expression through the IKKβ/NFκB pathway, which thereby exerts an antiapoptotic effect in response to arsenite. In light of the importance of apoptosis evasion during carcinogenesis, we anticipate that COX-2 induction may be at least partially responsible for the carcinogenic effect of arsenite on skin

    Optical bulk-boundary dichotomy in a quantum spin Hall insulator

    Full text link
    The bulk-boundary correspondence is a key concept in topological quantum materials. For instance, a quantum spin Hall insulator features a bulk insulating gap with gapless helical boundary states protected by the underlying Z2 topology. However, the bulk-boundary dichotomy and distinction are rarely explored in optical experiments, which can provide unique information about topological charge carriers beyond transport and electronic spectroscopy techniques. Here, we utilize mid-infrared absorption micro-spectroscopy and pump-probe micro-spectroscopy to elucidate the bulk-boundary optical responses of Bi4Br4, a recently discovered room-temperature quantum spin Hall insulator. Benefiting from the low energy of infrared photons and the high spatial resolution, we unambiguously resolve a strong absorption from the boundary states while the bulk absorption is suppressed by its insulating gap. Moreover, the boundary absorption exhibits a strong polarization anisotropy, consistent with the one-dimensional nature of the topological boundary states. Our infrared pump-probe microscopy further measures a substantially increased carrier lifetime for the boundary states, which reaches one nanosecond scale. The nanosecond lifetime is about one to two orders longer than that of most topological materials and can be attributed to the linear dispersion nature of the helical boundary states. Our findings demonstrate the optical bulk-boundary dichotomy in a topological material and provide a proof-of-principal methodology for studying topological optoelectronics.Comment: 26 pages, 4 figure

    Repetitive transcranial magnetic stimulation for treatment of limb spasticity following multiple sclerosis: a systematic review and meta-analysis

    Get PDF
    Pilot trials have suggested that repetitive transcranial magnetic stimulation (rTMS) may reduce limb spasticity in multiple sclerosis (MS). We carried out the current meta-analysis to synthesize currently available evidence regarding such correlation. Up to November 2022, five international electronic databases (Cochrane CENTRAL, PubMed, Embase, Web of Science, and CINAHL) and four Chinese electronic databases (CBM, CNKI, WanFang Data, and VIP) were systematically searched to identify randomized trials comparing active rTMS and sham stimulation in patients with MS-related spasticity. Two reviewers independently selected studies and extracted data on study design, quality, clinical outcomes, and time points measured. The primary outcome was clinical spasticity relief after intervention. Secondary outcomes included spasticity at the follow-up visit 2 weeks later and post-treatment fatigue. Of 831 titles found, we included 8 studies (181 participants) in the quantitative analysis. Pooled analyses showed that rTMS therapy was associated with significant spasticity relief in the early post-intervention period [standardized mean differences (SMD): -0.67; 95%CI: -1.12 to -0.21], but there was insufficient evidence for rTMS in reducing spasticity at the follow-up visit 2 weeks later (SMD: -0.17; 95%CI: -0.52 to 0.17) and fatigue (SMD: -0.26; 95%CI: -0.84 to 0.31). This evidence supports the recommendations to treat MS-related spasticity with rTMS, but underlines the need for further large randomized trials
    corecore