278 research outputs found

    Design and Operation of Biomass Circulating Fluidized Bed Boiler with High Steam Parameter

    Get PDF
    Two circulating fluidized bed(CFB) boilers with capacity of 12 MWe and 25 MWe, respectively, with biomass as fuel, adopting the basic technology independently developed by Institute of Engineering Thermophysics (IET), Chinese Academy of Sciences, have been in commercial operation since March 2010 in China. This paper focuses on the design principles, the design specifications and operating results of the two CFB boilers

    Efficient Secure Multiparty Computation for Multidimensional Arithmetics and Its Application in Privacy-Preserving Biometric Identification

    Get PDF
    Over years of the development of secure multi-party computation (MPC), many sophisticated functionalities have been made pratical and multi-dimensional operations occur more and more frequently in MPC protocols, especially in protocols involving datasets of vector elements, such as privacy-preserving biometric identification and privacy-preserving machine learning. In this paper, we introduce a new kind of correlation, called tensor triples, which is designed to make multi-dimensional MPC protocols more efficient. We will discuss the generation process, the usage, as well as the applications of tensor triples and show that it can accelerate privacy-preserving biometric identification protocols, such as FingerCode, Eigenfaces and FaceNet, by more than 1000 times

    Enhancing Textual Personality Detection toward Social Media: Integrating Long-term and Short-term Perspectives

    Full text link
    Textual personality detection aims to identify personality characteristics by analyzing user-generated content toward social media platforms. Numerous psychological literature highlighted that personality encompasses both long-term stable traits and short-term dynamic states. However, existing studies often concentrate only on either long-term or short-term personality representations, without effectively combining both aspects. This limitation hinders a comprehensive understanding of individuals' personalities, as both stable traits and dynamic states are vital. To bridge this gap, we propose a Dual Enhanced Network(DEN) to jointly model users' long-term and short-term personality for textual personality detection. In DEN, a Long-term Personality Encoding is devised to effectively model long-term stable personality traits. Short-term Personality Encoding is presented to capture short-term dynamic personality states. The Bi-directional Interaction component facilitates the integration of both personality aspects, allowing for a comprehensive representation of the user's personality. Experimental results on two personality detection datasets demonstrate the effectiveness of the DEN model and the benefits of considering both the dynamic and stable nature of personality characteristics for textual personality detection.Comment: 11 pages, 9 figure

    Shear Stress-mediated Angiogenesis Through Id1 Relevant to Atherosclerosis

    Get PDF
    Abnormal shear stress in the blood vessel is an important stimulating factor for the formation of angiogenesis and vulnerable plaques. This paper intended to explore the role of shear stress-regulated Id1 in angiogenesis. First, we applied a carotid artery ring ligation to create local stenosis in ApoE-/- mice. Then, 3D geometry of the vessel network was reconstructed based on MRI, and our analysis of computational fluid dynamics revealed that wall shear stress of the proximal region was much higher than that of the distal region. In addition, results from histological staining of the proximal region found more vulnerable-probe plaques with new capillary formation, the presence of macrophages and collagen fibers degradation. Our in vitro and in vivo experiments further indicated high shear stress can induce endothelial cell-mediated angiogenesis and high expression of Id1. Id1-overexpression promoted endothelial cells migration and angiogenesis through collagen degradation mediated by MT-MMPs. Together, our results support a biomechanical role for Id1 in angiogenesis, suggesting manipulation of the Id1 activity may offer a novel anti-angiogenic therapeutic strategy in vulnerable plaques

    Highly time-resolved chemical speciation and source apportionment of organic aerosol components in Delhi, India, using extractive electrospray ionization mass spectrometry

    Get PDF
    In recent years, the Indian capital city of Delhi has been impacted by very high levels of air pollution, especially during winter. Comprehensive knowledge of the composition and sources of the organic aerosol (OA), which constitutes a substantial fraction of total particulate mass (PM) in Delhi, is central to formulating effective public health policies. Previous source apportionment studies in Delhi identified key sources of primary OA (POA) and showed that secondary OA (SOA) played a major role but were unable to resolve specific SOA sources. We address the latter through the first field deployment of an extractive electrospray ionization time-of-flight mass spectrometer (EESI-TOF) in Delhi, together with a high-resolution aerosol mass spectrometer (AMS). Measurements were conducted during the winter of 2018/19, and positive matrix factorization (PMF) was used separately on AMS and EESI-TOF datasets to apportion the sources of OA. AMS PMF analysis yielded three primary and two secondary factors which were attributed to hydrocarbon-like OA (HOA), biomass burning OA (BBOA-1 and BBOA-2), more oxidized oxygenated OA (MO-OOA), and less oxidized oxygenated OA (LO-OOA). On average, 40 % of the total OA mass was apportioned to the secondary factors. The SOA contribution to total OA mass varied greatly between the daytime (76.8 %, 10:00–16:00 local time (LT)) and nighttime (31.0 %, 21:00–04:00 LT). The higher chemical resolution of EESI-TOF data allowed identification of individual SOA sources. The EESI-TOF PMF analysis in total yielded six factors, two of which were primary factors (primary biomass burning and cooking-related OA). The remaining four factors were predominantly of secondary origin: aromatic SOA, biogenic SOA, aged biomass burning SOA, and mixed urban SOA. Due to the uncertainties in the EESI-TOF ion sensitivities, mass concentrations of EESI-TOF SOA-dominated factors were related to the total AMS SOA (i.e. MO-OOA + LO-OOA) by multiple linear regression (MLR). Aromatic SOA was the major SOA component during the daytime, with a 55.2 % contribution to total SOA mass (42.4 % contribution to total OA). Its contribution to total SOA, however, decreased to 25.4 % (7.9 % of total OA) during the nighttime. This factor was attributed to the oxidation of light aromatic compounds emitted mostly from traffic. Biogenic SOA accounted for 18.4 % of total SOA mass (14.2 % of total OA) during the daytime and 36.1 % of total SOA mass (11.2 % of total OA) during the nighttime. Aged biomass burning and mixed urban SOA accounted for 15.2 % and 11.0 % of total SOA mass (11.7 % and 8.5 % of total OA mass), respectively, during the daytime and 15.4 % and 22.9 % of total SOA mass (4.8 % and 7.1 % of total OA mass), respectively, during the nighttime. A simple dilution–partitioning model was applied on all EESI-TOF factors to estimate the fraction of observed daytime concentrations resulting from local photochemical production (SOA) or emissions (POA). Aromatic SOA, aged biomass burning, and mixed urban SOA were all found to be dominated by local photochemical production, likely from the oxidation of locally emitted volatile organic compounds (VOCs). In contrast, biogenic SOA was related to the oxidation of diffuse regional emissions of isoprene and monoterpenes. The findings of this study show that in Delhi, the nighttime high concentrations are caused by POA emissions led by traffic and biomass burning and the daytime OA is dominated by SOA, with aromatic SOA accounting for the largest fraction. Because aromatic SOA is possibly more toxic than biogenic SOA and primary OA, its dominance during the daytime suggests an increased OA toxicity and health-related consequences for the general public.</p

    Discovery of potential biomarkers for osteoporosis using LC/GC−MS metabolomic methods

    Get PDF
    PurposeFor early diagnosis of osteoporosis (OP), plasma metabolomics of OP was studied by untargeted LC/GC−MS in a Chinese elderly population to find possible diagnostic biomarkers.MethodsA total of 379 Chinese community-dwelling older adults aged ≥65 years were recruited for this study. The BMD of the calcaneus was measured using quantitative ultrasound (QUS), and a T value ≤-2.5 was defined as OP. Twenty-nine men and 47 women with OP were screened, and 29 men and 36 women were matched according to age and BMI as normal controls using propensity matching. Plasma from these participants was first analyzed by untargeted LC/GC−MS, followed by FC and P values to screen for differential metabolites and heatmaps and box plots to differentiate metabolites between groups. Finally, metabolic pathway enrichment analysis of differential metabolites was performed based on KEGG, and pathways with P ≤ 0.05 were selected as enrichment pathways.ResultsWe screened metabolites with FC&gt;1.2 or FC&lt;1/1.2 and P&lt;0.05 and found 33 differential metabolites in elderly men and 30 differential metabolites in elderly women that could be potential biomarkers for OP. 2-Aminomuconic acid semialdehyde (AUC=0.72, 95% CI 0.582-0.857, P=0.004) is highly likely to be a biomarker for screening OP in older men. Tetradecanedioic acid (AUC=0.70, 95% CI 0.575-0.818, P=0.004) is highly likely to be a biomarker for screening OP in older women.ConclusionThese findings can be applied to clinical work through further validation studies. This study also shows that metabolomic analysis has great potential for application in the early diagnosis and recurrence monitoring of OP in elderly individuals

    Ultrastructural insights into cellular organization, energy storage and ribosomal dynamics of an ammonia-oxidizing archaeon from oligotrophic oceans

    Get PDF
    IntroductionNitrososphaeria, formerly known as Thaumarchaeota, constitute a diverse and widespread group of ammonia-oxidizing archaea (AOA) inhabiting ubiquitously in marine and terrestrial environments, playing a pivotal role in global nitrogen cycling. Despite their importance in Earth’s ecosystems, the cellular organization of AOA remains largely unexplored, leading to a significant unanswered question of how the machinery of these organisms underpins metabolic functions.MethodsIn this study, we combined spherical-chromatic-aberration-corrected cryo-electron tomography (cryo-ET), scanning transmission electron microscopy (STEM), and energy dispersive X-ray spectroscopy (EDS) to unveil the cellular organization and elemental composition of Nitrosopumilus maritimus SCM1, a representative member of marine Nitrososphaeria.Results and DiscussionOur tomograms show the native ultrastructural morphology of SCM1 and one to several dense storage granules in the cytoplasm. STEM-EDS analysis identifies two types of storage granules: one type is possibly composed of polyphosphate and the other polyhydroxyalkanoate. With precise measurements using cryo-ET, we observed low quantity and density of ribosomes in SCM1 cells, which are in alignment with the documented slow growth of AOA in laboratory cultures. Collectively, these findings provide visual evidence supporting the resilience of AOA in the vast oligotrophic marine environment

    Enhancing network function parallelism in mobile edge computing using Deep Reinforcement Learning

    No full text
    This paper introduces a Deep Reinforcement Learning (DRL)-based framework to enhance Network Function Parallelism (NFP) in Mobile Edge Computing (MEC). Leveraging Network Function Virtualization (NFV), the proposed framework optimizes service delay by solving a fairness-aware throughput maximization problem for service function chain placement. It aims to maximize the long-term cumulative reward while satisfying Quality of Service (QoS) requirements. The framework also preserves resources for future requests by efficiently managing the initialized network functions distribution. Simulation results demonstrate the superior performance of the proposed framework across various metrics. Specifically, our framework improves the average delay and deployment rate by 1.2% and 2.4% compared to the existing best method
    corecore