44 research outputs found

    Sustainable and recyclable super engineering thermoplastic from biorenewable monomer

    Get PDF
    Environmental and health concerns force the search for sustainable super engineering plastics (SEPs) that utilise bio-derived cyclic monomers, e.g. isosorbide instead of restricted petrochemicals. However, previously reported bio-derived thermosets or thermoplastics rarely offer thermal/mechanical properties, scalability, or recycling that match those of petrochemical SEPs. Here we use a phase transfer catalyst to synthesise an isosorbide-based polymer with a high molecular weightā€‰>100ā€‰kgā€‰molāˆ’1, which is reproducible at a 1-kg-scale production. It is transparent and solvent/melt-processible for recycling, with a glass transition temperature of 212ā€‰Ā°C, a tensile strength of 78ā€‰MPa, and a thermal expansion coefficient of 23.8 ppm Kāˆ’1. Such a performance combination has not been reported before for bio-based thermoplastics, petrochemical SEPs, or thermosets. Interestingly, quantum chemical simulations show the alicyclic bicyclic ring structure of isosorbide imposes stronger geometric restraint to polymer chain than the aromatic group of bisphenol-A.11Ysciescopu

    Chiral nematic self-assembly of minimally surface damaged chitin nanofibrils and its load bearing functions

    Get PDF
    Chitin is one of the most abundant biomaterials in nature, with 1010 tons produced annually as hierarchically organized nanofibril fillers to reinforce the exoskeletons of arthropods. This green and cheap biomaterial has attracted great attention due to its potential application to reinforce biomedical materials. Despite that, its practical use is limited since the extraction of chitin nanofibrils requires surface modification involving harsh chemical treatments, leading to difficulties in reproducing their natural prototypal hierarchical structure, i.e. chiral nematic phase. Here, we develop a chemical etching-free approach using calcium ions, called "natural way", to disintegrate the chitin nanofibrils while keeping the essential moiety for the self-assembly, ultimately resulting in the reproduction of chitin's natural chiral structure in a polymeric matrix. This chiral chitin nanostructure exceptionally toughens the composite. Our resultant chiral nematic phase of chitin materials can contribute to the understanding and use of the reinforcing strategy in nature.open119sciescopu

    A biomimetic chitosan composite with improved mechanical properties in wet conditions

    Full text link
    Chitosan is one of the most widely used structural polymers for biomedical applications because it has many favorable properties. However, one of the most critical drawbacks regarding the use of chitosan as a biomedical material is its poor mechanical properties in wet conditions. Here, we designed a method to improve the mechanical properties of chitosan in wet conditions and minimized the swelling behavior of chitosan film due to water adsorption by mimicking the sclerotization of insect cuticles and squid beaks, that is, catechol-meditated crosslinking. The biomimetic chitosan composite film was prepared by mixing chitosan with l-3,4-dihydroxyphenylalanine (DOPA) as a catecholic crosslinker and sodium periodate as an oxidant. The catechol-meditated crosslinking provided a sevenfold enhancement in the stiffness in wet conditions compared to pure chitosan films and reduced the swelling behavior of the chitosan film. This strategy expands the possible applications for the use of chitosan composites as load-bearing biomaterials. (c) 2013 American Institute of Chemical Engineers Biotechnol. Prog., 29: 505512, 2013X112623sciescopu

    Dopamine-Mediated Sclerotization of Regenerated Chitin in Ionic Liquid

    Full text link
    Chitin is a promising structural material for biomedical applications, due to its many advantageous properties and abundance in nature. However, its usage and development in the biomedical field have been stagnant, because of chitinā€™s poor mechanical properties in wet conditions and the difficulties in transforming it into an applicable form. To overcome these challenges, we created a novel biomimetic chitin composite. This regenerated chitin, prepared with ionic liquid, showed improved mechanical properties in wet conditions by mimicking insect cuticle and squid beak sclerotization, i.e., catechol-meditated cross-linking. By ionic liquid-based heat treatment, dopamine oxidation produced melanin-like compounds and dopamine-meditated cross-links without any solvent evaporation and oxidant utilization. The dopamine-meditated sclerotization increased the ultimate tensile strength (UTS) of the regenerated chitin by 2.52-fold, measured after six weeks of phosphate-buffered saline (PBS) submersion. In addition, the linear swelling ratio (LSR) of the chitin film was reduced by about 22%. This strategy raises a possibility of using regenerated chitin as an artificial hard tissue in wet conditions

    Dopamine-Mediated Sclerotization of Regenerated Chitin in Ionic Liquid

    Full text link
    Chitin is a promising structural material for biomedical applications, due to its many advantageous properties and abundance in nature. However, its usage and development in the biomedical field have been stagnant, because of chitinā€™s poor mechanical properties in wet conditions and the difficulties in transforming it into an applicable form. To overcome these challenges, we created a novel biomimetic chitin composite. This regenerated chitin, prepared with ionic liquid, showed improved mechanical properties in wet conditions by mimicking insect cuticle and squid beak sclerotization, i.e., catechol-meditated cross-linking. By ionic liquid-based heat treatment, dopamine oxidation produced melanin-like compounds and dopamine-meditated cross-links without any solvent evaporation and oxidant utilization. The dopamine-meditated sclerotization increased the ultimate tensile strength (UTS) of the regenerated chitin by 2.52-fold, measured after six weeks of phosphate-buffered saline (PBS) submersion. In addition, the linear swelling ratio (LSR) of the chitin film was reduced by about 22%. This strategy raises a possibility of using regenerated chitin as an artificial hard tissue in wet conditions

    Dopamine-mediated sclerotization of regenerated chitin in ionic liquid

    Full text link
    Chitin is a promising structural material for biomedical applications, due to its many advantageous properties and abundance in nature. However, its usage and development in the biomedical field have been stagnant, because of chitin's poor mechanical properties in wet conditions and the difficulties in transforming it into an applicable form. To overcome these challenges, we created a novel biomimetic chitin composite. This regenerated chitin, prepared with ionic liquid, showed improved mechanical properties in wet conditions by mimicking insect cuticle and squid beak sclerotization, i.e., catechol-meditated cross-linking. By ionic liquid-based heat treatment, dopamine oxidation produced melanin-like compounds and dopamine-meditated cross-links without any solvent evaporation and oxidant utilization. The dopamine-meditated sclerotization increased the ultimate tensile strength (UTS) of the regenerated chitin by 2.52-fold, measured after six weeks of phosphate-buffered saline (PBS) submersion. In addition, the linear swelling ratio (LSR) of the chitin film was reduced by about 22%. This strategy raises a possibility of using regenerated chitin as an artificial hard tissue in wet conditions.open111010sciescopu

    Practical Applications of Selfā€Healing Polymers Beyond Mechanical and Electrical Recovery

    Full text link
    Abstract Selfā€healing polymeric materials, which can repair physical damage, offer promising prospects for protective applications across various industries. Although prolonged durability and resource conservation are key advantages, focusing solely on mechanical recovery may limit the market potential of these materials. The unique physical properties of selfā€healing polymers, such as interfacial reduction, seamless connection lines, temperature/pressure responses, and phase transitions, enable a multitude of innovative applications. In this perspective, the diverse applications of selfā€healing polymers beyond their traditional mechanical strength are emphasized and their potential in various sectors such as food packaging, damageā€reporting, radiation shielding, acoustic conservation, biomedical monitoring, and tissue regeneration is explored. With regards to the commercialization challenges, including scalability, robustness, and performance degradation under extreme conditions, strategies to overcome these limitations and promote successful industrialization are discussed. Furthermore, the potential impacts of selfā€healing materials on future research directions, encompassing environmental sustainability, advanced computational techniques, integration with emerging technologies, and tailoring materials for specific applications are examined. This perspective aims to inspire interdisciplinary approaches and foster the adoption of selfā€healing materials in various realā€life settings, ultimately contributing to the development of nextā€generation materials

    Nanochitin and Nanochitosan: Chitin Nanostructure Engineering with Multiscale Properties for Biomedical and Environmental Applications

    Full text link
    Nanochitin and nanochitosan (with random copolymer-based multiscale architectures of glucosamine and N-acetylglucosamine units) have recently attracted immense attention for the development of green, sustainable, and advanced functional materials. Nanochitin and nanochitosan are multiscale materials from small oligomers, rod-shaped nanocrystals, longer nanofibers, to hierarchical assemblies of nanofibers. Various physical properties of chitin and chitosan depend on their molecular- and nano-structures; translational research has utilized them for a wide range of applications (biomedical, industrial, environmental, and so on). Instead of reviewing the entire extensive literature on chitin and chitosan, this paper highlights recent developments in multiscale-dependent material properties and their applications; immune, medical, reinforcing, adhesive, green electrochemical materials, biological scaffolds, and sustainable food packaging have been discussed considering the size, shape, and assembly of chitin nanostructures. In summary, new perspectives for the development of sustainable advanced functional materials based on nanochitin and nanochitosan by understanding and engineering their multiscale properties are described.11Nsciescopu
    corecore