136 research outputs found

    Monitoring and analysis of reinforced concrete plate-column structure under room temperature and fire based on acoustic emission

    Get PDF
    This paper attempts to disclose the damage mechanism of reinforced concrete plate-column structure under room temperature and fire. Several tests were carried out to record the law of crack development on the plate surface under room temperature. The infrared detection technology was adopted to observe how cracks develop under fire. The acoustic emission (AE) signals at different positions of the specimen were monitored by the AE techniques. Coupled with the macroscopic test phenomena, several characteristic parameters collected by the AE system, namely, cumulative number of events, event rate, energy rate and b-value, were analyzed in details. The results show that: the cumulative number of events was active in the loading, heating and cooling stages; the crack density and the change of internal forces could be derived from the trend of event rate; the local energy changes of the specimen could be deciphered from the curves of energy rate and b-value, making it possible to judge if a component has reached the failure state; the specimen suffered the most severe damages, when the AE parameters suddenly changed; AE monitoring enables the early warning of fire to reinforced concrete plate-column structure; infrared detection technology is suitable for real-time monitoring of crack development under high temperature.      &nbsp

    Resonance characteristics analysis of the power reflux hydraulic transmission system

    Get PDF
    The power reflux hydraulic transmission system (PRHTS), which is a new continuously variable transmission system, is put forward to enhance the efficiency of the torque converter. This study shows that the basic structure and operating principle of the PRHTS. Because the six-cylindered diesel engine’s operation range is between 40 Hz and 150 Hz, resonance point of the PRHTS should not exist in resonance region of engine. In order to study the resonance characteristics of the PRHTS, the dynamic model of the PRHTS is established by merging the planetary gear train dynamic model and torque converter dynamic model. This study also researches the amplitude-frequency characteristic curves of the PRHTS with different speed ratio and the effect of the torsional stiffness and damping coefficient to the amplitude-frequency characteristic of the PRHTS. The simulation result shows that the resonance frequency of the PRHTS could be excluded from engine’s operation range and the amplitude will decrease by changing the torsional stiffness and damping coefficient of the coupling

    EDEM2 is a diagnostic and prognostic biomarker and associated with immune infiltration in glioma: A comprehensive analysis

    Get PDF
    Glioma is a highly common pathological brain tumor. Misfolded protein response, which is strongly associated with the growth of cancerous tumors, is mediated by the gene, endoplasmic reticulum degradation-enhancing alpha-mannosidase-like protein 2. However, this gene has not been linked to glioma. To assess the same, we used The Cancer Genome Atlas, Chinese Glioma Genome Atlas, and Genotype-Tissue Expression datasets. The gene was overexpressed in gliomas. This overexpression was linked to unfavorable clinical characteristics, such as the World Health Organization grade, isocitrate dehydrogenase mutation, and the combined loss of the short arm chromosome 1 and the long arm of chromosome 19. Quantitative polymerase chain reaction experiments and immunohistochemistry on clinical samples from our institution verified the gene’s expression and clinical importance. The Human Protein Atlas website verified the messenger ribonucleic acid expression of the gene in glioma cell lines, and immunohistochemistry verified the presence of its protein. A previous survival study indicated that its high expression is substantially related to a bad prognosis. It was identified as an independent predictor of primary glioma prognosis using multivariate Cox regression analysis. To forecast individual survival, we created a nomogram based on this (concordance-index = 0.847). Additionally, functional annotation demonstrated its major role in the control of the extracellular matrix and immune system. The scratch assay and transwell migration assay confirmed the decreased invasive ability of U251 glioma cells with the gene knockdown. Its increased expression was found to be related to the extent of macrophage infiltration using the CIBERSORT, ESTIMATE, Single-sample Gene Set Enrichment Analysis, and Tumor Immune Single-Cell Hub (TISCH) algorithms. The Tumor Immune Dysfunction and Exclusion algorithm revealed that the gene can accurately predict the response of immunotherapy (area under the receiver operating characteristic curve = 0.857). Further, isocitrate dehydrogenase 1 mutation is typically more frequent when the gene expression is high. Finally, five medicines targeting this gene were discovered utilizing the molecular docking program and drug sensitivity analysis of the RNAactDrug website. Low expression of the gene inhibited glioma cell invasion. Therefore, the gene is helpful for the diagnosis, prognosis, and case-specific immunotherapy of glioma

    Optimization Model of Taxi Fleet Size Based on GPS Tracking Data

    Get PDF
    reasonable taxi fleet size has a significant impact on the satisfaction of urban traffic demand, the alleviation of urban traffic congestion, and the stability of taxi business groups. Most existing studies measure the overall scale by using macro indices, and few studies are from the micro level. To meet the transportation demand for taxis, mitigating the mismatch between taxi supply and demand, this research proposes an urban taxi fleet size calculating model based on GPS tracking data. Firstly, on the basis of road network segmentation, the probability model of a passenger taxi-taking a road section as a unit is built to evaluate the difficulty of taxi-taking on a road section. Furthermore, a user queuing model is built for the &ldquo difficult to take a taxi&rdquo road section in the peak period, and the service mileage required by potential taxi users is calculated. After that, a transportation capacity measurement model is built to estimate the number of taxis required in different time periods, Finally, the income constraint model is used to explain the impact of different vehicle fleet sizes on the income of taxi groups, so as to provide a reference for the determination of the final fleet size. The model is applied to data from Xi&rsquo an. The calculation results are based on data from May 2014, and show that the scale of taxi demand is about 654&ndash 2237, and after considering the impact of different fleet size increases on income, when the income variation index is limited to 0.10, i.e., the decrease of drivers&rsquo income will not exceed 10%, an increase of 1286 taxis will be able to meet 66% of the unmet demand in the peak period. The conclusion indicates that the model can effectively calculate the required fleet size and formulate the constraint solutions. This method provided can be considered as a support for formulating the regulation strategy of an urban taxi fleet size. Document type: Articl

    Study on Stability and Elastic Properties of β-TiX (X=Nb, Ta) Alloys From First-Principles Calculations

    Get PDF
    In this article, the phase stability, elastic properties, and electronic structure of the β-TiX (X = Nb, Ta) alloy body-centered cubic (bcc) structure were systematically studied with the aid of first-principles calculations. The results show that the phase stability and elastic properties of the β-TiX alloys are closely related to the contents of alloying element X. For β-TiX alloys, the contents of Nb and Ta that satisfy their mechanical stability are 10% and 13%, respectively; at room temperature, both β-TiNb and β-TiTa alloys can reach a thermodynamically stable state when the content of Nb or Ta is 25%. In terms of elastic properties, the content of alloying element X is positively correlated with the elastic constant, Young’s modulus, and shear modulus of the β-TiX alloys. The elastic modulus reaches its minimum when the X content is 25%, and the smallest direction of Young’s modulus appears in the <111> direction. The calculation results of the electronic structure show that the bonding strength between the Ti atom and X atom increases with the content of alloying element X, which leads to improvement of phase stability and elastic modulus

    Efficient removal of Cd(II) from aqueous solution by pinecone biochar: Sorption performance and governing mechanisms

    Get PDF
    Cadmium (Cd) is one of the most harmful and widespread environmental pollutants. Despite decades-long research efforts, the remediation of water contaminated by Cd has remained a significant challenge. A novel carbon material, pinecone biochar, was previously hypothesized to be a promising adsorbent for Cd, while so far, it has received little attention. This study evaluated the sorption capacity of pinecone biochar through isotherm experiments. Based on Langmuir model, the adsorption maximum for Cd(II) was up to 92.7 mg g−1. The mechanism of Cd(II) adsorption on pinecone biochar was also explored through both thermodynamic and kinetics adsorption experiments, as well as both solution and solid-phase microstructure characterization. The solid-solution partitioning behaviour of Cd(II) fitted best with the Tόth model while the adsorption process followed a pseudo-second-order rate, suggesting that the Cd(II) adsorption on the pinecone biochar was mainly a chemisorption process. Microstructure characteristics and mechanism analysis further suggested that coprecipitation and surface complexation were the main mechanisms of Cd adsorption by biochar. Coprecipitation occurred mainly through the forms of Cd(OH)2 and CdCO3. Our results demonstrated that pinecone biochar was an efficient adsorbent which holds a huge potential for Cd(II) removal from aqueous solution

    Fumarylacetoacetate Hydrolase Knock-out Rabbit Model for Hereditary Tyrosinemia Type 1.

    Get PDF
    Hereditary tyrosinemia type 1 (HT1) is a severe human autosomal recessive disorder caused by the deficiency of fumarylacetoacetate hydroxylase (FAH), an enzyme catalyzing the last step in the tyrosine degradation pathway. Lack of FAH causes accumulation of toxic metabolites (fumarylacetoacetate and succinylacetone) in blood and tissues, ultimately resulting in severe liver and kidney damage with onset that ranges from infancy to adolescence. This tissue damage is lethal but can be controlled by administration of 2-(2-nitro-4-trifluoromethylbenzoyl)-1,3-cyclohexanedione (NTBC), which inhibits tyrosine catabolism upstream of the generation of fumarylacetoacetate and succinylacetone. Notably, in animals lacking FAH, transient withdrawal of NTBC can be used to induce liver damage and a concomitant regenerative response that stimulates the growth of healthy hepatocytes. Among other things, this model has raised tremendous interest for the in vivo expansion of human primary hepatocytes inside these animals and for exploring experimental gene therapy and cell-based therapies. Here, we report the generation of FAH knock-out rabbits via pronuclear stage embryo microinjection of transcription activator-like effector nucleases. FAH-/- rabbits exhibit phenotypic features of HT1 including liver and kidney abnormalities but additionally develop frequent ocular manifestations likely caused by local accumulation of tyrosine upon NTBC administration. We also show that allogeneic transplantation of wild-type rabbit primary hepatocytes into FAH-/- rabbits enables highly efficient liver repopulation and prevents liver insufficiency and death. Because of significant advantages over rodents and their ease of breeding, maintenance, and manipulation compared with larger animals including pigs, FAH-/- rabbits are an attractive alternative for modeling the consequences of HT1.Wellcome Trus

    Development and validation of a nomogram to predict the five-year risk of revascularization for non-culprit lesion progression in STEMI patients after primary PCI

    Get PDF
    BackgroundAcute ST-segment elevation myocardial infarction (STEMI) patients after primary PCI were readmitted for revascularization due to non-culprit lesion (NCL) progression.ObjectiveTo develop and validate a nomogram that can accurately predict the likelihood of NCL progression revascularization in STEMI patients following primary PCI.MethodsThe study enrolled 1,612 STEMI patients after primary PCI in our hospital from June 2009 to June 2018. Patients were randomly divided into training and validation sets in a 7:3 ratio. The independent risk factors were determined by LASSO regression and multivariable logistic regression analysis. Multivariate logistic regression analysis was utilized to develop a nomogram, which was then evaluated for its performance using the concordance statistics, calibration plots, and decision curve analysis (DCA).ResultsThe nomogram was composed of five predictors, including age (OR: 1.007 95% CI: 1.005–1.009, P < 0.001), body mass index (OR: 1.476, 95% CI: 1.363–1.600, P < 0.001), triglyceride and glucose index (OR: 1.050, 95% CI: 1.022–1.079, P < 0.001), Killip classification (OR: 1.594, 95% CI: 1.140–2.229, P = 0.006), and serum creatinine (OR: 1.007, 95% CI: 1.005–1.009, P < 0.001). Both the training and validation groups accurately predicted the occurrence of NCL progression revascularization (The area under the receiver operating characteristic curve values, 0.901 and 0.857). The calibration plots indicated an excellent agreement between prediction and observation in both sets. Furthermore, the DCA demonstrated that the model exhibited clinical efficacy.ConclusionA convenient and accurate nomogram was developed and validated for predicting the occurrence of NCL progression revascularization in STEMI patients after primary PCI

    Study on rheological, adsorption and hydration properties of cement slurries incorporated with EPEG-based polycarboxylate superplasticizers

    Get PDF
    A series of polycarboxylate superplasticizers (PCEs) with different side-chain densities, main chain polymerization degrees, and side-chain lengths were designed and synthesized using a novel highly active ethylene glycol mono vinyl ether polyethylene glycol as the ether monomer. The influence of polycarboxylate ether on the rheological properties, interface adsorption, and hydration characteristics in cement paste was investigated through characterization of charge density, rheological properties, adsorption behavior, and hydration heat. The results indicate that the adsorption process of PCE on cement particles is spontaneous physical adsorption, and the hydration kinetics fitting reveals that the geometric crystal growth exponent n is in the range of 1–2, with needle-like and lamellar hydration products formed. With a decrease in side-chain density, the broadening of molecular weight distribution and the increase of charge density accelerate the flow of slurry, reduces saturation adsorption, and delays cement hydration. A decrease in main chain polymerization degree results in a downward trend in molecular weight and charge density, leading to larger molecular conformations, reduced slurry flow, decreased saturation adsorption, and delayed cement hydration. As the side-chain length of PCE (molecular weight) increases, the charge density decreases, and the molecular conformation exhibits a compact structure with reduced slurry flow, decreased saturation adsorption, and delayed cement hydration. In cases of low side-chain density, short side chains, and low molecular weight, enhanced adsorption capacity and faster adsorption rates are observed, resulting in the lower viscosity and a delay in the cement hydration process

    Critical current density: Measurements vs. reality

    Get PDF
    Different experimental techniques are employed to evaluate the critical current density (Jc), namely transport current measurements and two different magnetisation measurements forming quasi-equilibrium and dynamic critical states. Our technique-dependent results for superconducting YBa 2Cu3O7 (YBCO) film and MgB2 bulk samples show an extremely high sensitivity of Jc and associated interpretations, such as irreversibility fields and Kramer plots, which lose meaning without a universal approach. We propose such approach for YBCO films based on their unique pinning features. This approach allows us to accurately recalculate the magnetic-field-dependent Jc obtained by any technique into the Jc behaviour, which would have been measured by any other method without performing the corresponding experiments. We also discovered low-frequency-dependent phenomena, governing flux dynamics, but contradicting the considered ones in the literature. The understanding of these phenomena, relevant to applications with moving superconductors, can clarify their dramatic impact on the electric-field criterion through flux diffusivity and corresponding measurements. © Copyright EPLA, 2013
    • …
    corecore