276 research outputs found

    Stepwise Self-Consistent Mathematical Reasoning with Large Language Models

    Full text link
    Using Large Language Models for complex mathematical reasoning is difficult, primarily due to the complexity of multi-step reasoning. The main challenges of this process include (1) selecting critical intermediate results to advance the procedure, and (2) limited exploration of potential solutions. To address these issues, we introduce a novel algorithm, namely Stepwise Self-Consistent Chain-of-Thought (SSC-CoT). SSC-CoT employs a strategy of selecting intermediate steps based on the intersection of various reasoning chains. Additionally, SSC-CoT enables the model to discover critical intermediate steps by querying a knowledge graph comprising relevant domain knowledge. To validate SSC-CoT, we present a new dataset, TriMaster100, tailored for complex trigonometry problems. This dataset contains 100 questions, with each solution broken down into scored intermediate steps, facilitating a comprehensive evaluation of the mathematical reasoning process. On TriMaster100, SSC-CoT triples the effectiveness of the state-of-the-art methods. Furthermore, we benchmark SSC-CoT on the widely recognized complex mathematical question dataset, MATH level 5, and it surpasses the second-best method by 7.2% in accuracy. Code and the TriMaster100 dataset can be found at: https://github.com/zhao-zilong/ssc-cot

    Genetically modified adenoviral vector with the protein transduction domain of Tat improves gene transfer to CAR-deficient cells

    Get PDF
    The transduction efficiency of Ad (adenovirus) depends, to some extent, on the expression level of CAR (coxsackievirus and Ad receptor) of a target cell. The low level of CAR on the cell surface is a potential barrier to efficient gene transfer. To overcome this problem, PTD.AdeGFP (where eGFP is enhanced green fluorescent protein) was constructed by modifying the HI loop of Ad5 (Ad type 5) fibre with the Tat (trans-activating) PTD (protein transduction domain) derived from HIV. The present study showed that PTD.AdeGFP significantly improved gene transfer to multiple cell types deficient in expression of CAR. The improvement in gene transfer was not the result of charge-directed binding between the virus and the cell surface. Although PTD.AdeGFP formed aggregates, it infected target cells in a manner different from AdeGFP aggregates precipitated by calcium phosphate. In addition, PTD.AdeGFP was able to transduce target cells in a dynamin-independent pathway. The results provide some new clues as to how PTD.AdeGFP infects target cells. This new vector would be valuable in gene-function analysis and for gene therapy in cancer

    Research on multi-energy cooperative participation of grid frequency inertia response control strategy for energy storage type doubly-fed wind turbine considering wind speed disturbance

    Get PDF
    With the proposal of carbon peaking and carbon neutralization, the penetration rate of wind power generation continues to increase. This paper focuses on the problem that doubly fed induction wind turbines are vulnerable to input “source” disturbances and have weak frequency modulation ability, which reduces the stability of the power grid. Based on the structural model of energy storage system embedded in doubly fed wind power generation system, it is compared the ability of super capacitor energy storage and releasing rotor kinetic energy to provide inertia response power and energy, and the feasibility of multi-energy coordinated inertia response is analyzed. Based on the inertia time constant of conventional synchronous generator set, the inertia time constant and actual inertia constant of energy storage doubly fed wind power generation system under variable wind speed are defined. An extended state observer is used to estimate the change of captured mechanical power caused by the change of wind speed, and a control strategy for doubly fed induction generator with super capacitor to participate in power grid frequency regulation is designed. Finally, considering the aggregation of wind power and the difference of the state of charge during the operation of distributed energy storage, the 3*3*3 wind farm model is established using Matlab/Simulink simulation software. The feasibility and advantages of the frequency modulation control strategy proposed in this paper are verified by building a power grid frequency modulation simulation involving wind farms and traditional generators

    Case report and literature review: Acute rhabdomyolysis caused by overheating of electric blanket complicated with Guillain-Barré syndrome

    Get PDF
    Rhabdomyolysis (RM) induced by electric blankets is exceedingly rare, with only three cases identified in our literature review. Both RM and Guillain–Barré syndrome (GBS) present with similar clinical manifestations of myalgia and muscle weakness, posing a potential challenge for accurate diagnosis in clinical settings. This report presents the case of a 22-year-old man who developed RM subsequent to the use of an electric blanket. Despite undergoing plasma exchange and renal replacement therapy, the patient continued to exhibit poor muscle strength in both lower limbs. Subsequent comprehensive evaluation revealed the presence of concurrent GBS. Following a 5-day course of intravenous gamma globulin treatment, the patient experienced rapid recovery of muscle strength and was discharged. Additionally, we reviewed seven cases from the literature of coexistent RM and GBS. This indicated that investigation of the timing of onset of muscle strength decline in RM patients could help to identify potential concurrent neurological or muscular disorders. In cases in which concurrent GBS and RM cannot be definitively ascertained during early hospitalization, prioritizing plasma exchange treatment may lead to improved patient outcomes
    corecore