7 research outputs found

    Some recent studies on hohlraum physics

    Full text link
    Some of our recent studies on hohlraum physics are presented, mainly including simulation study on hohlraum physics experiments on SGIII prototype, the design of Au + U + Au sandwich hohlraum for ignition target, and an initial design of elliptical hohlraum and pertinent drive laser power in order to generate an ignition radiation profile

    Initial study and design on ignition ellipraum

    No full text

    Study of shockwave method for diagnosing the radiation fields of laser-driven gold hohlraums

    No full text
    Besides the routinely used broad-band x-ray spectrometer (Dante or SXS), ablative shock-wave method is often used to diagnose the radiation fields of laser-driven Hohlraums. The x-ray ablation process of Aluminum and Titanium is studied numerically with a 1-D radiation hydrodynamic code RDMG [F. Tinggui et al., Chin. J. Comput. Phys. 16, 199 (1999)], based on which a new scaling relation of the equivalent radiation temperature with the ablative shock velocity in Aluminum plates is proposed, and a novel method is developed for determining simultaneously the radiation temperature and the M-band (2-4 keV) fraction in laser-driven gold Hohlraums

    Some recent studies on hohlraum physics

    No full text
    Some of our recent studies on hohlraum physics are presented, mainly including simulation study on hohlraum physics experiments on SGIII prototype, the design of Au + U + Au sandwich hohlraum for ignition target, and an initial design of elliptical hohlraum and pertinent drive laser power in order to generate an ignition radiation profile

    Study of shockwave method for diagnosing the radiation fields of laser-driven gold hohlraums

    No full text
    Besides the routinely used broad-band x-ray spectrometer (Dante or SXS), ablative shock-wave method is often used to diagnose the radiation fields of laser-driven Hohlraums. The x-ray ablation process of Aluminum and Titanium is studied numerically with a 1-D radiation hydrodynamic code RDMG [F. Tinggui et al., Chin. J. Comput. Phys. 16, 199 (1999)], based on which a new scaling relation of the equivalent radiation temperature with the ablative shock velocity in Aluminum plates is proposed, and a novel method is developed for determining simultaneously the radiation temperature and the M-band (2-4 keV) fraction in laser-driven gold Hohlraums
    corecore