86 research outputs found

    Infinite dimensional Chevalley groups and Kac-Moody groups over Z\mathbb{Z}

    Full text link
    Let AA be a symmetrizable generalized Cartan matrix, which is not of finite or affine type. Let g\mathfrak{g} be the corresponding Kac-Moody algebra over a commutative ring RR with 11. We construct an infinite-dimensional group GV(R)G_V(R) analogous to a finite-dimensional Chevalley group over RR. We use a Z\mathbb{Z}-form of the universal enveloping algebra of g\mathfrak{g} and a Z\mathbb{Z}-form of an integrable highest-weight module VV. We construct groups GV(Z)G_V(\mathbb{Z}) analogous to arithmetic subgroups in the finite-dimensional case. We also consider a universal representation-theoretic Kac-Moody group GG and its completion G~\widetilde{G}. For the completion we prove a Bruhat decomposition G~(Q)=G~(Z)B~(Q)\widetilde{G}({\mathbb{Q}})=\widetilde{G}({\mathbb{Z}})\widetilde{B}({\mathbb{Q}}) over Q\mathbb{Q}, and that the arithmetic subgroup Ξ“~(Z)\widetilde{\Gamma}(\mathbb{Z}) coincides with the subgroup of integral points G~(Z)\widetilde{G}(\mathbb{Z})Comment: Submitte
    • …
    corecore