38 research outputs found

    Reply: Complexity in Camalexin Biosynthesis

    Full text link

    Plastid-nucleus communication involves calcium-modulated MAPK signalling

    Get PDF
    Chloroplast retrograde signals play important roles in coordinating the plastid and nuclear gene expression and are critical for proper chloroplast biogenesis and for maintaining optimal chloroplast functions in response to environmental changes in plants. Until now, the signals and the mechanisms for retrograde signalling remain poorly understood. Here we identify factors that allow the nucleus to perceive stress conditions in the chloroplast and to respond accordingly by inducing or repressing specific nuclear genes encoding plastid proteins. We show that ABI4, which is known to repress the LHCB genes during retrograde signalling, is activated through phosphorylation by the MAP kinases MPK3/MPK6 and the activity of these kinases is regulated through 14-3-3 omega-mediated Ca2+-dependent scaffolding depending on the chloroplast calcium sensor protein CAS. These findings uncover an additional mechanism in which chloroplast-modulated Ca2+ signalling controls the MAPK pathway for the activation of critical components of the retrograde signalling chain

    Plastid-nucleus communication involves calcium-modulated MAPK signalling

    Get PDF
    Chloroplast retrograde signals play important roles in coordinating the plastid and nuclear gene expression and are critical for proper chloroplast biogenesis and for maintaining optimal chloroplast functions in response to environmental changes in plants. Until now, the signals and the mechanisms for retrograde signalling remain poorly understood. Here we identify factors that allow the nucleus to perceive stress conditions in the chloroplast and to respond accordingly by inducing or repressing specific nuclear genes encoding plastid proteins. We show that ABI4, which is known to repress the LHCB genes during retrograde signalling, is activated through phosphorylation by the MAP kinases MPK3/MPK6 and the activity of these kinases is regulated through 14-3-3 omega-mediated Ca2+-dependent scaffolding depending on the chloroplast calcium sensor protein CAS. These findings uncover an additional mechanism in which chloroplast-modulated Ca2+ signalling controls the MAPK pathway for the activation of critical components of the retrograde signalling chain

    Generation of Transgene-Free Maize Male Sterile Lines Using the CRISPR/Cas9 System

    Get PDF
    Male sterility (MS) provides a useful breeding tool to harness hybrid vigor for hybrid seed production. It is necessary to generate new male sterile mutant lines for the development of hybrid seed production technology. The CRISPR/Cas9 technology is well suited for targeting genomes to generate male sterile mutants. In this study, we artificially synthesized Streptococcus pyogenes Cas9 gene with biased codons of maize. A CRISPR/Cas9 vector targeting the MS8 gene of maize was constructed and transformed into maize using an Agrobacterium-mediated method, and eight T0 independent transgenic lines were generated. Sequencing results showed that MS8 genes in these T0 transgenic lines were not mutated. However, we detected mutations in the MS8 gene in F1 and F2 progenies of the transgenic line H17. A potential off-target site sequence which had a single nucleotide that was different from the target was also mutated in the F2 progeny of the transgenic line H17. Mutation in the MS8 gene and the male sterile phenotype could be stably inherited by the next generation in a Mendelian fashion. Transgene-free ms8 male sterile plants were obtained by screening the F2 generation of male sterile plants, and the MS phenotype could be introduced into other elite inbred lines for hybrid production

    Dysregulation of sphingolipid metabolism in pain

    Get PDF
    Pain is a clinical condition that is currently of great concern and is often caused by tissue or nerve damage or occurs as a concomitant symptom of a variety of diseases such as cancer. Severe pain seriously affects the functional status of the body. However, existing pain management programs are not fully satisfactory. Therefore, there is a need to delve deeper into the pathological mechanisms underlying pain generation and to find new targets for drug therapy. Sphingolipids (SLs), as a major component of the bilayer structure of eukaryotic cell membranes, also have powerful signal transduction functions. Sphingolipids are abundant, and their intracellular metabolism constitutes a huge network. Sphingolipids and their various metabolites play significant roles in cell proliferation, differentiation, apoptosis, etc., and have powerful biological activities. The molecules related to sphingolipid metabolism, mainly the core molecule ceramide and the downstream metabolism molecule sphingosine-1-phosphate (S1P), are involved in the specific mechanisms of neurological disorders as well as the onset and progression of various types of pain, and are closely related to a variety of pain-related diseases. Therefore, sphingolipid metabolism can be the focus of research on pain regulation and provide new drug targets and ideas for pain

    The MAPK Kinase Kinase GmMEKK1 Regulates Cell Death and Defense Responses

    Get PDF
    MAPK signaling pathways play critical roles in plant immunity. Here, we silenced multiple genes encoding MAPKs using virus-induced gene silencing mediated by Bean pod mottle virus to identify MAPK genes involved in soybean (Glycine max) immunity. Surprisingly, a strong hypersensitive response (HR) cell death was observed when soybean MAPK KINASE KINASE1 (GmMEKK1), a homolog of Arabidopsis (Arabidopsis thaliana) MEKK1, was silenced. The HR was accompanied by the overaccumulation of defense signaling molecules, salicylic acid (SA) and hydrogen peroxide. Genes involved in primary metabolism, translation/transcription, photosynthesis, and growth/development were down-regulated in GmMEKK1-silenced plants, while the expression of defense-related genes was activated. Accordingly, GmMEKK1-silenced plants were more resistant to downy mildew (Peronospora manshurica) and Soybean mosaic virus compared with control plants. Silencing GmMEKK1 reduced the activation of GmMPK6 but enhanced the activation of GmMPK3 in response to flg22 peptide. Unlike Arabidopsis MPK4, GmMPK4 was not activated by either flg22 or SA. Interestingly, transient overexpression of GmMEKK1 in Nicotiana benthamiana also induced HR. Our results indicate that GmMEKK1 plays both positive and negative roles in immunity and appears to differentially activate downstream MPKs by promoting GmMPK6 activation but suppressing GmMPK3 activation in response to flg22. The involvement of GmMPK4 kinase activity in cell death and in flg22- or SA-triggered defense responses in soybean requires further investigation

    Heparin-controlled growth of polypyrrole nanowires

    No full text
    Heparin, a potent anticoagulant, has been used for the first time for the synthesis of PPy nanowires serving not only as an anion dopant but also as an effective morphology-directing agent. The obtained PPy nanowires exhibit long and fine structures with smooth surface and the average diameter of the nanowires is about 90-100 nm and lengths are several hundred nanometers to micrometers. The possible formation mechanism of PPy nanowires may be related to the chain structure of heparin with functional groups (-SO3- and -COO-) on the surface. The effect of concentrations of pyrrole monomers and heparin on the. morphology and size of PPy nanowires has been investigated
    corecore