33 research outputs found
Suppression of Gluconeogenic Gene Expression by LSD1-Mediated Histone Demethylation
Aberrant gluconeogenic gene expression is associated with diabetes, glycogen storage disease, and liver cancer. However, little is known how these genes are regulated at the chromatin level. In this study, we investigated in HepG2 cells whether histone demethylation is a potential mechanism. We found that knockdown or pharmacological inhibition of histone demethylase LSD1 causes remarkable transcription activation of two gluconeogenic genes, FBP1 and G6Pase, and consequently leads to increased de novo glucose synthesis and decreased intracellular glycogen content. Mechanistically, LSD1 occupies the promoters of FBP1 and G6Pase, and modulates their H3K4 dimethylation levels. Thus, our work identifies an epigenetic pathway directly governing gluconeogenic gene expression, which might have important implications in metabolic physiology and diseases
PPARdelta Regulates Satellite Cell Proliferation and Skeletal Muscle Regeneration
Peroxisome proliferator-activated receptors (PPARs) are a class of nuclear receptors that play important roles in development and energy metabolism. Whereas PPARdelta has been shown to regulate mitochondrial biosynthesis and slow-muscle fiber types, its function in skeletal muscle progenitors (satellite cells) is unknown. Since constitutive mutation of Ppardelta leads to embryonic lethality, we sought to address this question by conditional knockout (cKO) of Ppardelta using Myf5-Cre/Ppardeltaflox/flox alleles to ablate PPARdelta in myogenic progenitor cells. Although Ppardelta-cKO mice were born normally and initially displayed no difference in body weight, muscle size or muscle composition, they later developed metabolic syndrome, which manifested as increased body weight and reduced response to glucose challenge at age nine months. Ppardelta-cKO mice had 40% fewer satellite cells than their wild-type littermates, and these satellite cells exhibited reduced growth kinetics and proliferation in vitro. Furthermore, regeneration of Ppardelta-cKO muscles was impaired after cardiotoxin-induced injury. Gene expression analysis showed reduced expression of the Forkhead box class O transcription factor 1 (FoxO1) gene in Ppardelta-cKO muscles under both quiescent and regenerating conditions, suggesting that PPARdelta acts through FoxO1 in regulating muscle progenitor cells. These results support a function of PPARdelta in regulating skeletal muscle metabolism and insulin sensitivity, and they establish a novel role of PPARdelta in muscle progenitor cells and postnatal muscle regeneration
PPARδ regulates satellite cell proliferation and skeletal muscle regeneration
Peroxisome proliferator-activated receptors (PPARs) are a class of nuclear receptors that play important roles in development and energy metabolism. Whereas PPARδ has been shown to regulate mitochondrial biosynthesis and slow-muscle fiber types, its function in skeletal muscle progenitors (satellite cells) is unknown. Since constitutive mutation of Pparδ leads to embryonic lethality, we sought to address this question by conditional knockout (cKO) of Pparδ using Myf5-Cre/Pparδflox/flox alleles to ablate PPARδ in myogenic progenitor cells. Although Pparδ-cKO mice were born normally and initially displayed no difference in body weight, muscle size or muscle composition, they later developed metabolic syndrome, which manifested as increased body weight and reduced response to glucose challenge at age nine months. Pparδ-cKO mice had 40% fewer satellite cells than their wild-type littermates, and these satellite cells exhibited reduced growth kinetics and proliferation in vitro. Furthermore, regeneration of Pparδ-cKO muscles was impaired after cardiotoxin-induced injury. Gene expression analysis showed reduced expression of the Forkhead box class O transcription factor 1 (FoxO1) gene in Pparδ-cKO muscles under both quiescent and regenerating conditions, suggesting that PPARδ acts through FoxO1 in regulating muscle progenitor cells. These results support a function of PPARδ in regulating skeletal muscle metabolism and insulin sensitivity, and they establish a novel role of PPARδ in muscle progenitor cells and postnatal muscle regeneration
Transcription factor Hlx controls a systematic switch from white to brown fat through Prdm16-mediated co-activation
Browning of subcutaneous white fat (iWAT) involves several reprograming events, but the underlying mechanisms are incompletely understood. Here we show that the transcription factor Hlx is selectively expressed in brown adipose tissue (BAT) and iWAT, and is translationally upregulated by beta3-adrenergic signaling-mediated suppression of the translational inhibitor 4E-BP1. Hlx interacts with and is co-activated by Prdm16 to control BAT-selective gene expression and mitochondrial biogenesis. Hlx heterozygous knockout mice have defects in brown-like adipocyte formation in iWAT, and develop glucose intolerance and high fat-induced hepatic steatosis. Conversely, transgenic expression of Hlx at a physiological level drives a full program of thermogenesis and converts iWAT to brown-like fat, which improves glucose homeostasis and prevents obesity and hepatic steatosis. The adipose remodeling phenotypes are recapitulated by fat-specific injection of Hlx knockdown and overexpression viruses, respectively. Our studies establish Hlx as a powerful regulator for systematic white adipose tissue browning and offer molecular insights into the underlying transcriptional mechanism.The transcriptional co-activator Prdm16 regulates browning of white adipose tissue (WAT). Here, the authors show that Prdm16 interacts with the transcription factor Hlx, which is stabilized in response to beta3-adrenergic signaling, to increase thermogenic gene expression and mitochondrial biogenesis in subcutaneous WAT
Jmjd3-Mediated H3K27me3 Dynamics Orchestrate Brown Fat Development and Regulate White Fat Plasticity
SummaryProgression from brown preadipocytes to adipocytes engages two transcriptional programs: the expression of adipogenic genes common to both brown fat (BAT) and white fat (WAT), and the expression of BAT-selective genes. However, the dynamics of chromatin states and epigenetic enzymes involved remain poorly understood. Here we show that BAT development is selectively marked and guided by repressive H3K27me3 and is executed by its demethylase Jmjd3. We find that a significant subset of BAT-selective genes, but not common fat genes or WAT-selective genes, are demarcated by H3K27me3 in both brown and white preadipocytes. Jmjd3-catalyzed removal of H3K27me3, in part through Rreb1-mediated recruitment, is required for expression of BAT-selective genes and for development of beige adipocytes both in vitro and in vivo. Moreover, gain- and loss-of-function Jmjd3 transgenic mice show age-dependent body weight reduction and cold intolerance, respectively. Together, we identify an epigenetic mechanism governing BAT fate determination and WAT plasticity
The Histone Demethylase Jhdm1a Regulates Hepatic Gluconeogenesis
Hepatic gluconeogenesis is required for maintaining blood glucose homeostasis; yet, in diabetes mellitus, this process is unrestrained and is a major contributor to fasting hyperglycemia. To date, the impacts of chromatin modifying enzymes and chromatin landscape on gluconeogenesis are poorly understood. Through catalyzing the removal of methyl groups from specific lysine residues in the histone tail, histone demethylases modulate chromatin structure and, hence, gene expression. Here we perform an RNA interference screen against the known histone demethylases and identify a histone H3 lysine 36 (H3K36) demethylase, Jhdm1a, as a key negative regulator of gluconeogenic gene expression. In vivo, silencing of Jhdm1a promotes liver glucose synthesis, while its exogenous expression reduces blood glucose level. Importantly, the regulation of gluconeogenesis by Jhdm1a requires its demethylation activity. Mechanistically, we find that Jhdm1a regulates the expression of a major gluconeogenic regulator, C/EBPα. This is achieved, at least in part, by its USF1-dependent association with the C/EBPα promoter and its subsequent demethylation of dimethylated H3K36 on the C/EBPα locus. Our work provides compelling evidence that links histone demethylation to transcriptional regulation of gluconeogenesis and has important implications for the treatment of diabetes
10-qubit entanglement and parallel logic operations with a superconducting circuit
Here we report on the production and tomography of genuinely entangled
Greenberger-Horne-Zeilinger states with up to 10 qubits connecting to a bus
resonator in a superconducting circuit, where the resonator-mediated
qubit-qubit interactions are used to controllably entangle multiple qubits and
to operate on different pairs of qubits in parallel. The resulting 10-qubit
density matrix is unambiguously probed, with a fidelity of .
Our results demonstrate the largest entanglement created so far in solid-state
architectures, and pave the way to large-scale quantum computation.Comment: Revised version with 16 pages, 13 figures, and 2 table
Gene full names and primersequences used in this study.
<p>Gene full names and primersequences used in this study.</p