325 research outputs found

    Weakly-supervised Pre-training for 3D Human Pose Estimation via Perspective Knowledge

    Full text link
    Modern deep learning-based 3D pose estimation approaches require plenty of 3D pose annotations. However, existing 3D datasets lack diversity, which limits the performance of current methods and their generalization ability. Although existing methods utilize 2D pose annotations to help 3D pose estimation, they mainly focus on extracting 2D structural constraints from 2D poses, ignoring the 3D information hidden in the images. In this paper, we propose a novel method to extract weak 3D information directly from 2D images without 3D pose supervision. Firstly, we utilize 2D pose annotations and perspective prior knowledge to generate the relationship of that keypoint is closer or farther from the camera, called relative depth. We collect a 2D pose dataset (MCPC) and generate relative depth labels. Based on MCPC, we propose a weakly-supervised pre-training (WSP) strategy to distinguish the depth relationship between two points in an image. WSP enables the learning of the relative depth of two keypoints on lots of in-the-wild images, which is more capable of predicting depth and generalization ability for 3D human pose estimation. After fine-tuning on 3D pose datasets, WSP achieves state-of-the-art results on two widely-used benchmarks

    DMIS: Dynamic Mesh-based Importance Sampling for Training Physics-Informed Neural Networks

    Full text link
    Modeling dynamics in the form of partial differential equations (PDEs) is an effectual way to understand real-world physics processes. For complex physics systems, analytical solutions are not available and numerical solutions are widely-used. However, traditional numerical algorithms are computationally expensive and challenging in handling multiphysics systems. Recently, using neural networks to solve PDEs has made significant progress, called physics-informed neural networks (PINNs). PINNs encode physical laws into neural networks and learn the continuous solutions of PDEs. For the training of PINNs, existing methods suffer from the problems of inefficiency and unstable convergence, since the PDE residuals require calculating automatic differentiation. In this paper, we propose Dynamic Mesh-based Importance Sampling (DMIS) to tackle these problems. DMIS is a novel sampling scheme based on importance sampling, which constructs a dynamic triangular mesh to estimate sample weights efficiently. DMIS has broad applicability and can be easily integrated into existing methods. The evaluation of DMIS on three widely-used benchmarks shows that DMIS improves the convergence speed and accuracy in the meantime. Especially in solving the highly nonlinear Schr\"odinger Equation, compared with state-of-the-art methods, DMIS shows up to 46% smaller root mean square error and five times faster convergence speed. Code are available at https://github.com/MatrixBrain/DMIS.Comment: Accepted to AAAl-2

    MM-NeRF: Multimodal-Guided 3D Multi-Style Transfer of Neural Radiance Field

    Full text link
    3D style transfer aims to render stylized novel views of 3D scenes with the specified style, which requires high-quality rendering and keeping multi-view consistency. Benefiting from the ability of 3D representation from Neural Radiance Field (NeRF), existing methods learn the stylized NeRF by giving a reference style from an image. However, they suffer the challenges of high-quality stylization with texture details for multi-style transfer and stylization with multimodal guidance. In this paper, we reveal that the same objects in 3D scenes show various states (color tone, details, etc.) from different views after stylization since previous methods optimized by single-view image-based style loss functions, leading NeRF to tend to smooth texture details, further resulting in low-quality rendering. To tackle these problems, we propose a novel Multimodal-guided 3D Multi-style transfer of NeRF, termed MM-NeRF, which achieves high-quality 3D multi-style rendering with texture details and can be driven by multimodal-style guidance. First, MM-NeRF adopts a unified framework to project multimodal guidance into CLIP space and extracts multimodal style features to guide the multi-style stylization. To relieve the problem of lacking details, we propose a novel Multi-Head Learning Scheme (MLS), in which each style head predicts the parameters of the color head of NeRF. MLS decomposes the learning difficulty caused by the inconsistency of multi-style transfer and improves the quality of stylization. In addition, the MLS can generalize pre-trained MM-NeRF to any new styles by adding heads with small training costs (a few minutes). Extensive experiments on three real-world 3D scene datasets show that MM-NeRF achieves high-quality 3D multi-style stylization with multimodal guidance, keeps multi-view consistency, and keeps semantic consistency of multimodal style guidance. Codes will be released later

    Make Heterophily Graphs Better Fit GNN: A Graph Rewiring Approach

    Full text link
    Graph Neural Networks (GNNs) are popular machine learning methods for modeling graph data. A lot of GNNs perform well on homophily graphs while having unsatisfactory performance on heterophily graphs. Recently, some researchers turn their attention to designing GNNs for heterophily graphs by adjusting the message passing mechanism or enlarging the receptive field of the message passing. Different from existing works that mitigate the issues of heterophily from model design perspective, we propose to study heterophily graphs from an orthogonal perspective by rewiring the graph structure to reduce heterophily and making the traditional GNNs perform better. Through comprehensive empirical studies and analysis, we verify the potential of the rewiring methods. To fully exploit its potential, we propose a method named Deep Heterophily Graph Rewiring (DHGR) to rewire graphs by adding homophilic edges and pruning heterophilic edges. The detailed way of rewiring is determined by comparing the similarity of label/feature-distribution of node neighbors. Besides, we design a scalable implementation for DHGR to guarantee high efficiency. DHRG can be easily used as a plug-in module, i.e., a graph pre-processing step, for any GNNs, including both GNN for homophily and heterophily, to boost their performance on the node classification task. To the best of our knowledge, it is the first work studying graph rewiring for heterophily graphs. Extensive experiments on 11 public graph datasets demonstrate the superiority of our proposed methods.Comment: 11 page

    Robust Mid-Pass Filtering Graph Convolutional Networks

    Full text link
    Graph convolutional networks (GCNs) are currently the most promising paradigm for dealing with graph-structure data, while recent studies have also shown that GCNs are vulnerable to adversarial attacks. Thus developing GCN models that are robust to such attacks become a hot research topic. However, the structural purification learning-based or robustness constraints-based defense GCN methods are usually designed for specific data or attacks, and introduce additional objective that is not for classification. Extra training overhead is also required in their design. To address these challenges, we conduct in-depth explorations on mid-frequency signals on graphs and propose a simple yet effective Mid-pass filter GCN (Mid-GCN). Theoretical analyses guarantee the robustness of signals through the mid-pass filter, and we also shed light on the properties of different frequency signals under adversarial attacks. Extensive experiments on six benchmark graph data further verify the effectiveness of our designed Mid-GCN in node classification accuracy compared to state-of-the-art GCNs under various adversarial attack strategies.Comment: Accepted by WWW'2

    Insecticidal Activity of the Soil in the Rhizosphere of Viburnum odoratissimum against Solenopsis invicta (Hymenoptera: Formicidae)

    Get PDF
    Methyl salicylate produced by Viburnum odoratissimum is known to exert lethal or sublethal effects on insects. Replacing conventional pesticides with insecticidal plants is necessary for environmental protection. We evaluated the behavioral and toxicological responses of the red imported fire ant (RIFA Solenopsis invicta)( Hymenopter: Buren Formicidae) at different soil depths in the rhizosphere of V. odoratissimum. Results of insecticidal activity bioassays indicated that the mortality for minor and major ants in soil at depths of 0-10 cm at days 11 and 12 both ranged from 68.75% to 100.00%, with repellent rates of 83.54%–100.00% and 85.31%–100.00%, respectively. In behavioral ability tests, 85.45%–100.00% of minor ants and 86.74%–94.85% of major ants lost their ability to grasp after nine days, with crawl rates at only 0.00%–29.25% and 0.00%–55.77%, respectively. Therefore, we conclude from the result that the soil under V. odoratissimum at depths of 0-10 cm exhibited excellent insecticidal effect in controlling RIFA.Methyl salicylate produced by Viburnum odoratissimum is known to exert lethal or sublethal effects on insects. Replacing conventional pesticides with insecticidal plants is necessary for environmental protection. We evaluated the behavioral and toxicological responses of the red imported fire ant (RIFA Solenopsis invicta, Buren) (Hymenoptera: Formicidae) at different soil depths in the rhizosphere of V. odoratissimum. Results of insecticidal activity bioassays indicated that the mortality for minor and major ants in soil at depths of 0-10 cm at days 11 and 12 both ranged from 68.75% to 100.00%, with repellency rates of 83.54%-100.00% and 85.31%-100.00%, respectively. In behavioral ability tests, 85.45%-100.00% of minor ants and 86.74%-94.85% of major ants lost their ability to grasp after nine days, with crawling rates at only 0.00%-29.25% and 0.00%-55.77%, respectively. Therefore, we conclude from the result that the soil under V. odoratissimum at depths of 0-10 cm exhibited excellent insecticidal effect in controlling RIFA
    • …
    corecore