124 research outputs found

    Troika: Multi-Path Cross-Modal Traction for Compositional Zero-Shot Learning

    Full text link
    Recent compositional zero-shot learning (CZSL) methods adapt pre-trained vision-language models (VLMs) by constructing trainable prompts only for composed state-object pairs. Relying on learning the joint representation of seen compositions, these methods ignore the explicit modeling of the state and object, thus limiting the exploitation of pre-trained knowledge and generalization to unseen compositions. With a particular focus on the universality of the solution, in this work, we propose a novel paradigm for CZSL models that establishes three identification branches (i.e., Multi-Path) to jointly model the state, object, and composition. The presented Troika is our implementation that aligns the branch-specific prompt representations with decomposed visual features. To calibrate the bias between semantically similar multi-modal representations, we further devise a Cross-Modal Traction module into Troika that shifts the prompt representation towards the current visual content. We conduct extensive experiments on three popular benchmarks, where our method significantly outperforms existing methods in both closed-world and open-world settings.Comment: 14 page

    RSG: Fast Learning Adaptive Skills for Quadruped Robots by Skill Graph

    Full text link
    Developing robotic intelligent systems that can adapt quickly to unseen wild situations is one of the critical challenges in pursuing autonomous robotics. Although some impressive progress has been made in walking stability and skill learning in the field of legged robots, their ability to fast adaptation is still inferior to that of animals in nature. Animals are born with massive skills needed to survive, and can quickly acquire new ones, by composing fundamental skills with limited experience. Inspired by this, we propose a novel framework, named Robot Skill Graph (RSG) for organizing massive fundamental skills of robots and dexterously reusing them for fast adaptation. Bearing a structure similar to the Knowledge Graph (KG), RSG is composed of massive dynamic behavioral skills instead of static knowledge in KG and enables discovering implicit relations that exist in be-tween of learning context and acquired skills of robots, serving as a starting point for understanding subtle patterns existing in robots' skill learning. Extensive experimental results demonstrate that RSG can provide rational skill inference upon new tasks and environments and enable quadruped robots to adapt to new scenarios and learn new skills rapidly

    Sex differences in patients with COVID-19: a retrospective cohort study and meta-analysis

    Get PDF
    BACKGROUND: Accumulated evidence revealed that male was much more likely to higher severity and fatality by SARS-CoV-2 infection than female patients, but few studies and meta-analyses have evaluated the sex differences of the infection and progression of COVID-19 patients. AIM: We aimed to compare the sex differences of the epidemiological and clinical characteristics in COVID-19 patients; and to perform a meta-analysis evaluating the severe rate, fatality rate, and the sex differences of the infection and disease progression in COVID-19 patients. METHODS: We analyzed clinical data of patients in Changchun Infectious Hospital and Center, Changchun, Northeast China; and searched PubMed, Embase, Web of Science, and Cochrane Library without any language restrictions for published articles that reported the data of sex-disaggregated, number of severe, and death patients on the confirmed diagnosis of adult COVID-19 patients. RESULTS: The pooled severe rate and fatality rate of COVID-19 were 22.7% and 10.7%. Male incidence in the retrospective study was 58.1%, and the pooled incidence in male was 54.7%. CONCLUSION: The pooled severe rate in male and female of COVID-19 was 28.2% and 18.8%, the risky of severe and death was about 1.6folds higher in male compared with female, especially for older patients (> 50 y)

    Altered Functional and Causal Connectivity of Cerebello-Cortical Circuits between Multiple System Atrophy (Parkinsonian Type) and Parkinson’s Disease

    Get PDF
    Lesions of the cerebellum lead to motor and non-motor deficits by influencing cerebral cortex activity via cerebello-cortical circuits. It remains unknown whether the cerebello-cortical “disconnection” underlies motor and non-motor impairments both in the parkinsonian variant of multiple system atrophy (MSA-P) and Parkinson’s disease (PD). In this study, we investigated both the functional and effective connectivity of the cerebello-cortical circuits from resting-state functional magnetic resonance imaging (rs-fMRI) data of three groups (26 MSA-P patients, 31 PD patients, and 30 controls). Correlation analysis was performed between the causal connectivity and clinical scores. PD patients showed a weakened cerebellar dentate nucleus (DN) functional coupling in the posterior cingulate cortex (PCC) and inferior parietal lobe compared with MSA-P or controls. MSA-P patients exhibited significantly enhanced effective connectivity from the DN to PCC compared with PD patients or controls, as well as declined causal connectivity from the left precentral gyrus to right DN compared with the controls, and this value is significantly correlated with the motor symptom scores. Our findings demonstrated a crucial role for the cerebello-cortical networks in both MSA-P and PD patients in addition to striatal-thalamo-cortical (STC) networks and indicated that different patterns of cerebello-cortical loop degeneration are involved in the development of the diseases

    Pharmacokinetics, distribution, metabolism, and excretion of body-protective compound 157, a potential drug for treating various wounds, in rats and dogs

    Get PDF
    Body-protective compound (BPC) 157 demonstrates protective effects against damage to various organs and tissues. For future clinical applications, we had previously established a solid-phase synthesis process for BPC157, verified its biological activity in different wound models, and completed preclinical safety evaluations. This study aimed to investigate the pharmacokinetics, excretion, metabolism, and distribution profiles of BPC157. After a single intravenous (IV) administration, single intramuscular (IM) administrations at three doses in successive increments along with repeated IM administrations, the elimination half-life (t1/2) of prototype BPC157 was less than 30 min, and BPC157 showed linear pharmacokinetic characteristics in rats and beagle dogs at all doses. The mean absolute bioavailability of BPC157 following IM injection was approximately 14%–19% in rats and 45%–51% in beagle dogs. Using [3H]-labeled BPC157 and radioactivity examination, we proved that the main excretory pathways of BPC157 involved urine and bile. [3H]BPC157 was rapidly metabolized into a variety of small peptide fragments in vivo, thus forming single amino acids that entered normal amino acid metabolism and excretion pathways. In conclusion, this study provides the first analysis of the pharmacokinetics of BPC157, which will be helpful for its translation in the clinic

    Synthesis of Icariin-Zinc and its Protective Effect on Exercise Fatigue and Reproductive System Related Glands in Male Rats

    Get PDF
    Background: Icariin, a traditional Chinese medicine, plays a protective role in the treatment of exercise fatigue. Zinc, a trace element, plays an important role in the reproductive system. Therefore, we aimed to synthesize an Icariin-Zinc complex (by chemical means) and verify its protective effect on exercise fatigue and the reproductive system using animal experiments.Methods: The icariin-zinc complex was prepared by the reaction of icariin carbonyl and zinc ions (molar ratio 1:3). The molecular formula and structural formula of the complex were identified and tested. Fifty-six rats selected by swimming training were randomly divided into six groups: static control, exercise control, icariin, gluconate zinc (G-Zn group), icariin glucose zinc and icariin-zinc exercise ( low, high dose/L-E group, H-E group) groups. These groups respectively received the following doses: 1 ml/100 g, daily gavage with NS (for the first two groups), 45 mg/kg icariin, 110 mg/kg Gluconate Zinc, Icariin glucose zinc (45 mg/kg Icariin and 110 mg/kg Gluconate Zinc), 60 mg/kg icariin zinc and 180 mg/kg icariin zinc. After 3 weeks of gavage, we conducted 6 weeks of exhaustive swimming training. Test indices such as exhaustive swimming time of rats and body weight were evaluated after the last training exercise. The seminal vesicles, testes, and prostate gland were weighed, and their indices were calculated. The levels of testosterone (in the plasma) and glycogen (in the liver and muscle homogenates) were also evaluated using ELISA.Results: Compared with the static control group, the exhaustive swimming time of the rats in each group was prolonged. Compared with the other groups, the exhaustive swimming time of the L-E and H-E groups was significantly longer (p < 0.01); the Icariin-Zinc complex significantly increased the exhaustive swimming time of the rats. Compared with the static control group, the plasma testosterone content of the L-E and H-E groups increased significantly (p < 0.05). Compared with the exercise control group and G-Zn group, the plasma testosterone content of the H-E group also increased significantly (p < 0.01). The Icariin-Zinc complex significantly increased the serum levels of testosterone in rats. Compared with the control group, the muscle glycogen reserves of each group decreased, indicating that the muscle glycogen reserves of the rats decreased after swimming. Compared with other groups, the Icariin-Zinc complex can reduce the level of glycogen in the muscles, indicating that it can increase the utilization efficiency of glycogen in muscles. Compared with the static control and exercise control groups, the testicular weight of rats in the administration groups increased slightly. The Icariin-Zinc complex increased the testicular weight, indicating that the function of the reproductive system was improved to some extent.Conclusion: Icariin-Zinc can significantly prolong the exhaustive swimming time, improve exercise ability, and increase the plasma testosterone level (which is beneficial for improving the reproductive ability of male rats). Moreover, the beneficial effect of Icariin-Zinc on the glycogen content, testis index, and other reproductive system glands is dose-dependent

    Highly restricted near-surface permafrost extent during the mid-Pliocene warm period

    Get PDF
    Accurate understanding of permafrost dynamics is critical for evaluating and mitigating impacts that may arise as permafrost degrades in the future; however, existing projections have large uncertainties. Studies of how permafrost responded historically during Earth’s past warm periods are helpful in exploring potential future permafrost behavior and to evaluate the uncertainty of future permafrost change projections. Here, we combine a surface frost index model with outputs from the second phase of the Pliocene Model Intercomparison Project to simulate the near-surface (~3 to 4 m depth) permafrost state in the Northern Hemisphere during the mid-Pliocene warm period (mPWP, ~3.264 to 3.025 Ma). This period shares similarities with the projected future climate. Constrained by proxy-based surface air temperature records, our simulations demonstrate that near-surface permafrost was highly spatially restricted during the mPWP and was 93 ± 3% smaller than the preindustrial extent. Near-surface permafrost was present only in the eastern Siberian uplands, Canadian high Arctic Archipelago, and northernmost Greenland. The simulations are similar to near-surface permafrost changes projected for the end of this century under the SSP5-8.5 scenario and provide a perspective on the potential permafrost behavior that may be expected in a warmer world
    corecore