38 research outputs found

    dxz/yzd_{xz/yz} Orbital Subband Structures and Chiral Orbital Angular Momentum in the (001) Surface States of SrTiO3_3

    Get PDF
    We have performed angle resolved photoemission spectroscopy (ARPES) experiments on the surface states of SrTiO3_3(001) using linearly and circularly polarized light to investigate the subband structures of out-of-plane dxz/yzd_{xz/yz} orbitals and chiral orbital angular momentum (OAM). The data taken in the first Brillouin zone reveal new subbands for dxz/yzd_{xz/yz} orbitals with Fermi wave vectors of 0.25 and 0.45 A˚−1\mathrm{\AA}^{-1} in addition to the previously reported ones. As a result, there are at least two subbands for all the Ti 3d t2g_{2g} orbitals. Our circular dichroism ARPES data is suggestive of a chiral OAM structure in the surface states and may provide clues to the origin of the linear Rashba-like surface band splitting.Comment: 7 pages, 3 figures, Journal pape

    Doping-dependent superconducting physical quantities of K-doped BaFe2_2As2_2 obtained through infrared spectroscopy

    Full text link
    We investigated four single crystals of K-doped BaFe2_2As2_2 (Ba-122), Ba1−x_{1-x}Kx_xFe2_2As2_2 with xx = 0.29, 0.36, 0.40, and 0.51, using infrared spectroscopy. We explored a wide variety of doping levels, from under- to overdoped. We obtained the superfluid plasma frequencies (Ωsp\Omega_{\mathrm{sp}}) and corresponding London penetration depths (λL\lambda_{\mathrm{L}}) from the measured optical conductivity spectra. We also extracted the electron-boson spectral density (EBSD) functions using a two-parallel charge transport channel approach in the superconducting (SC) state. From the extracted EBSD functions, the maximum SC transition temperatures (TcMaxT_c^{\mathrm{Max}}) were determined using a generalized McMillan formula and the SC coherence lengths (ξSC\xi_{\mathrm{SC}}) were calculated using the timescales encoded in the EBSD functions and reported Fermi velocities. We identified some similarities and differences in the doping-dependent SC quantities between the K-doped Ba-122 and the hole-doped cuprates. We expect that the various SC quantities obtained across the wide doping range will provide helpful information for establishing the microscopic pairing mechanism in Fe-pnictide superconductors.Comment: 16 pages, 4 figures, 1 tabl

    Linear scaling relationship of N\'{e}el temperature and dominant magnons in pyrochlore ruthenates

    Full text link
    We present a systematic Raman spectroscopy study on a series of pyrochlore ruthenates, a system which is not yet clearly settled on its magnetic origin and structure. Apart from the Raman-active phonon modes, new peaks that appear in the energy range of 15 - 35 meV below the N\'{e}el temperature are assigned as one-magnon modes. The temperature evolution of one-magnon modes displays no significant thermal dependence in mode frequencies while the intensities decrease monotonically. Remarkably, one-magnons from all compounds show similar characteristics with a single dominant peak at lower energy and weaker side peaks at a couple of meV higher energy. Most importantly, we uncover a striking proportionality between the dominant magnon mode energies and the N\'{e}el temperatures. Our results suggest the Ru ions may have similar or the same magnetic phase in all pyrochlore ruthenates of our study. We have thus found an avenue for directly tuning the magnetic exchange interaction by the selection of the AA-site ion

    Rapid change of superconductivity and electron-phonon coupling through 19% doping in Bi2212

    Get PDF
    Electron-boson coupling plays a key role in superconductivity for many systems. However, in copper-based high-temperature (TcT_c) superconductors, its relation to superconductivity remains controversial despite strong spectroscopic fingerprints. Here we use angle-resolved photoemission spectroscopy to find a striking correlation between the superconducting gap and the bosonic coupling strength near the Brillouin zone boundary in Bi2_2Sr2_2CaCu2_2O8+δ_{8+\delta}. The bosonic coupling strength rapidly increases from the overdoped Fermi-liquid regime to the optimally doped strange metal, concomitant with the quadrupled superconducting gap and the doubled gap-to-Tc ratio across the pseudogap boundary. This synchronized lattice and electronic response suggests that the effects of electronic interaction and the electron-phonon coupling become intimately entangled upon entering the strange metal regime, which may in turn drive a stronger superconductivity.Comment: 40 pages, 12 figures, 1 tabl

    B1gB_{\rm 1g} phonon anomaly driven by Fermi surface instability at intermediate temperature in YBa2_2Cu3_3O7−δ_{7-\delta}

    Full text link
    We performed temperature- and doping-dependent high-resolution Raman spectroscopy experiments on YBa2_2Cu3_3O7−δ_{7-\delta} to study BB1g_{\rm 1g} phonons. The temperature dependence of the real part of the phonon self-energy shows a distinct kink at T=TB1gT=T_{\rm B1g} above TTc_{\rm c} due to softening, in addition to the one due to the onset of the superconductivity. TTB1g_{\rm B1g} is clearly different from the pseudogap temperature with a maximum in the underdoped region. The region between TTB1g_{\rm B1g} and TTc_{\rm c} resembles that of superconducting fluctuation or charge density wave order. While the true origin of the BB1g_{\rm 1g} phonon softening is not known, we can attribute it to a gap on the Fermi surface due to an electronic order. Our results may reveal the role of the BB1g_{\rm 1g} phonon not only in the superconducting state but also in the intertwined orders in multilayer copper oxide high-TTc_{\rm c} superconductors.Comment: 5 pages, 4 figure

    Spontaneous breaking of mirror symmetry beyond critical doping in Pb-Bi2212

    Full text link
    Identifying ordered phases and their underlying symmetries is the first and most important step toward understanding the mechanism of high-temperature superconductivity; critical behaviors of ordered phases are expected to be correlated with superconductivity. Efforts to find such ordered phases have been focused on symmetry breaking in the pseudogap region while the Fermi liquid-like metal region beyond the so-called critical doping pcp_{c} has been regarded as a trivial disordered state. Here, we used rotational anisotropy second harmonic generation and uncovered a broken mirror symmetry in the Fermi liquid-like phase in (Bi,Pb)2_{2}Sr2_{2}CaCu2_{2}O8+δ_{8+\delta} with p=0.205>pcp = 0.205 > p_{c}. By tracking the temperature evolution of the symmetry-breaking response, we verify an order parameter-like behavior with the onset temperature TupT_{up} at which the strange metal to Fermi liquid-like-metal crossover takes place. Complementary angle-resolved photoemission study showed that the quasiparticle coherence between CuO2\mathrm{CuO_{2}} bilayers is enhanced in proportion to the symmetry-breaking response as a function of temperature, indicating that the change in metallicity and symmetry breaking are linked. These observations contradict the conventional quantum disordered scenario for over-critical-doped cuprates and provide new insight into the nature of the quantum critical point in cuprates.Comment: 8 pages, 4 figure

    Deep learning-based statistical noise reduction for multidimensional spectral data

    Full text link
    In spectroscopic experiments, data acquisition in multi-dimensional phase space may require long acquisition time, owing to the large phase space volume to be covered. In such case, the limited time available for data acquisition can be a serious constraint for experiments in which multidimensional spectral data are acquired. Here, taking angle-resolved photoemission spectroscopy (ARPES) as an example, we demonstrate a denoising method that utilizes deep learning as an intelligent way to overcome the constraint. With readily available ARPES data and random generation of training data set, we successfully trained the denoising neural network without overfitting. The denoising neural network can remove the noise in the data while preserving its intrinsic information. We show that the denoising neural network allows us to perform similar level of second-derivative and line shape analysis on data taken with two orders of magnitude less acquisition time. The importance of our method lies in its applicability to any multidimensional spectral data that are susceptible to statistical noise.Comment: 8 pages, 8 figure

    Superconducting Fluctuations in Overdoped Bi2Sr2CaCu2O8 + δ

    Get PDF
    Fluctuating superconductivity—vestigial Cooper pairing in the resistive state of a material—is usually associated with low dimensionality, strong disorder, or low carrier density. Here, we report single-particle spectroscopic, thermodynamic and magnetic evidence for persistent superconducting fluctuations in the heavily hole-doped cuprate superconductor Bi2Sr2CaCu2O8þδ(Tc¼66 K) despite the high carrier density. With a sign-problem-free quantum Monte Carlo calculation, we show how a partially flat band at ðπ;0Þcan help enhance superconducting phase fluctuations. Finally, we discuss the implications of an anisotropic band structure on the phase-coherence-limited superconductivity in overdoped cuprates and other superconductors

    Superconducting fluctuations in overdoped Bi2_2Sr2_2CaCu2_2O8+δ_{8+\delta}

    Get PDF
    Fluctuating superconductivity - vestigial Cooper pairing in the resistive state of a material - is usually associated with low dimensionality, strong disorder or low carrier density. Here, we report single particle spectroscopic, thermodynamic and magnetic evidence for persistent superconducting fluctuations in heavily hole-doped cuprate superconductor Bi2_2Sr2_2CaCu2_2O8+δ_{8+\delta} (TcT_c = 66~K) despite the high carrier density. With a sign-problem free quantum Monte Carlo calculation, we show how a partially flat band at (π\pi,0) can help enhance superconducting phase fluctuations. Finally, we discuss the implications of an anisotropic band structure on the phase-coherence-limited superconductivity in overdoped cuprates and other superconductors.Comment: main: 8 pages, 6 figures + supplement: 10 pages, 15 figure
    corecore