73 research outputs found

    Pre-Production and Quality Assurance of the Mu2e Calorimeter Silicon Photomultipliers

    Full text link
    The Mu2e electromagnetic calorimeter has to provide precise information on energy, time and position for \sim100 MeV electrons. It is composed of 1348 un-doped CsI crystals, each coupled to two large area Silicon Photomultipliers (SiPMs). A modular and custom SiPM layout consisting of a 3×\times2 array of 6×\times6 mm2^2 UV-extended monolithic SiPMs has been developed to fulfill the Mu2e calorimeter requirements and a pre-production of 150 prototypes has been procured by three international firms (Hamamatsu, SensL and Advansid). A detailed quality assurance process has been carried out on this first batch of photosensors: the breakdown voltage, the gain, the quenching time, the dark current and the Photon Detection Efficiency (PDE) have been determined for each monolithic cell of each SiPMs array. One sample for each vendor has been exposed to a neutron fluency up to \sim8.5~×\times~1011^{11} 1 MeV (Si) eq. n/cm2^{2} and a linear increase of the dark current up to tens of mA has been observed. Others 5 samples for each vendor have undergone an accelerated aging in order to verify a Mean Time To Failure (MTTF) higher than \sim106^{6} hours.Comment: NDIP 2017 - New Developments In Photodetection, 3-7 July 2017, Tours (France

    Design, status and perspective of the Mu2e crystal calorimeter

    Full text link
    The Mu2e experiment at Fermilab will search for the charged lepton flavor violating process of neutrino-less μe\mu \to e coherent conversion in the field of an aluminum nucleus. Mu2e will reach a single event sensitivity of about 2.510172.5\cdot 10^{-17} that corresponds to four orders of magnitude improvements with respect to the current best limit. The detector system consists of a straw tube tracker and a crystal calorimeter made of undoped CsI coupled with Silicon Photomultipliers. The calorimeter was designed to be operable in a harsh environment where about 10 krad/year will be delivered in the hottest region and work in presence of 1 T magnetic field. The calorimeter role is to perform μ\mu/e separation to suppress cosmic muons mimiking the signal, while providing a high level trigger and a seeding the track search in the tracker. In this paper we present the calorimeter design and the latest R&\&D results.Comment: 4 pages, conference proceeding for a presentation held at TIPP'2017. To be published on Springer Proceedings in Physic

    Quality Assurance on a custom SiPMs array for the Mu2e experiment

    Full text link
    The Mu2e experiment at Fermilab will search for the coherent μe\mu \to e conversion on aluminum atoms. The detector system consists of a straw tube tracker and a crystal calorimeter. A pre-production of 150 Silicon Photomultiplier arrays for the Mu2e calorimeter has been procured. A detailed quality assur- ance has been carried out on each SiPM for the determination of its own operation voltage, gain, dark current and PDE. The measurement of the mean-time-to-failure for a small random sample of the pro-production group has been also completed as well as the determination of the dark current increase as a function of the ioninizing and non-ioninizing dose.Comment: 4 pages, 10 figures, conference proceeding for NSS-MIC 201

    The Mu2e undoped CsI crystal calorimeter

    Full text link
    The Mu2e experiment at Fermilab will search for Charged Lepton Flavor Violating conversion of a muon to an electron in an atomic field. The Mu2e detector is composed of a tracker, an electromagnetic calorimeter and an external system, surrounding the solenoid, to veto cosmic rays. The calorimeter plays an important role to provide: a) excellent particle identification capabilities; b) a fast trigger filter; c) an easier tracker track reconstruction. Two disks, located downstream of the tracker, contain 674 pure CsI crystals each. Each crystal is read out by two arrays of UV-extended SiPMs. The choice of the crystals and SiPMs has been finalized after a thorough test campaign. A first small scale prototype consisting of 51 crystals and 102 SiPM arrays has been exposed to an electron beam at the BTF (Beam Test Facility) in Frascati. Although the readout electronics were not the final, results show that the current design is able to meet the timing and energy resolution required by the Mu2e experiment.Comment: 6 pages, 8 figures, proceedings of the "Calorimetry for the high energy frontier (CHEF17)" conference, 2-6 October 2017, Lyon, Franc

    On the K - Absorptions in Light Nuclei by AMADEUS

    Get PDF
    The aim of the AMADEUS collaboration is to provide experimental information on the low-energy strong interaction of antikaons with nucleons, exploiting the absorptions of low momentum K - mesons (pK∼ 127 MeV/c) produced at the DA Φ NE collider, in the materials composing the KLOE detector setup, used as an active target. The K - single and multi-nucleon absorptions in light nuclei (4He and 12C) are investigated by reconstructing hyperon–pion, hyperon–nucleon/nucleus pairs, emitted in the final state of the reactions. In this paper the results obtained from the study of Λ π-, Λ p and Λ t correlated production are presented

    Results of the first user program on the Homogenous Thermal Neutron Source HOTNES (ENEA / INFN)

    Full text link
    The HOmogeneous Thermal NEutron Source (HOTNES) is a new type of thermal neutron irradiation assembly developed by the ENEA-INFN collaboration. The facility is fully characterized in terms of neutron field and dosimetric quantities, by either computational and experimental methods. This paper reports the results of the first "HOTNES users program", carried out in 2016, and covering a variety of thermal neutron active detectors such as scintillators, solid-state, single crystal diamond and gaseous detectors
    corecore