267 research outputs found

    A REMAINING OPEN PALEOGEOGRAPHY OF PALEO-ASIAN OCEAN BY EARLY PERMIAN: PALEOMAGNETIC CONSTRAINTS FROM THE PERMIAN VOLCANIC ROCKS IN MIDDLE-EAST INNER MONGOLIA, NE CHINA

    Get PDF
    We report a paleomagnetic investigation on Permian volcanic rocks in the middle-east Inner Mongolia, NE China, aiming to puzzle out the timing and position of the final closure of the eastern Paleo-Asian ocean (PAO) and further to better understand tectonic evolution of the Central Asian Orogenic Belt (CAOB). Two pre-folding characteristic components are isolated from the Sanmianjing and Elitu formations (~283–266 Ma) in the northern margin of the North China block (NMNCB) and the Dashizhai Formation (~280 Ma) in the Songliao-Xilinhot block (SXB), respectively.We report a paleomagnetic investigation on Permian volcanic rocks in the middle-east Inner Mongolia, NE China, aiming to puzzle out the timing and position of the final closure of the eastern Paleo-Asian ocean (PAO) and further to better understand tectonic evolution of the Central Asian Orogenic Belt (CAOB). Two pre-folding characteristic components are isolated from the Sanmianjing and Elitu formations (~283–266 Ma) in the northern margin of the North China block (NMNCB) and the Dashizhai Formation (~280 Ma) in the Songliao-Xilinhot block (SXB), respectively

    Numerical investigation on rules of fracture propagation during hydraulic fracturing in heterogeneous coal-rock mass

    Get PDF
    To investigate rules of fracture propagation during hydraulic fracturing in heterogeneous coal-rock mass, a new mathematical model for hydraulic fracturing with seepage-damage coupling and its numerical algorithm are proposed. The rules of coal-rock mass heterogeneity, confining pressure, beforehand hydraulic slotting, and non-symmetric pressure gradient on fracture propagation are investigated. Numerical results show the following: (1) Compared to homogeneous coal-rock mass, the fracture propagation pattern exhibits a more zig-zag characteristic and the fracture initiation pressure is reduced in heterogeneous coal-rock mass. (2) Fracture propagation during borehole fracturing is mainly controlled by confining pressure ratio, and the fracture would propagate along the path with least resistance in coal-rock mass. (3) During hydraulic fracturing with beforehand hydraulic slotting, fracture propagation pattern would become more complex with slotting length increasing; the propagation direction of fracture is primarily controlled by principal stress difference, the larger of principal stress difference, the more difficult of oriented fracturing. (4) Non-symmetric pressure gradient can reduce breakdown pressure and influence fracture propagation pattern, which provides a beneficial guide for oriented fracturing. The simulation results are consistent with the theoretical solutions and experimental observations, which is promising to guide field operation of hydraulic fracturing to improve coalbed methane extraction

    Kinetics of the decomposition reaction of phosphorite concentrate

    Get PDF
    Apatite is the raw material, which is mainly used in phosphate fertilizer, and part are used in yellow phosphorus, red phosphorus, and phosphoric acid in the industry. With the decrease of the high grade phosphorite lump, the agglomeration process is necessary for the phosphorite concentrate after beneficiation process. The decomposition behavior and the phase transformation are of vital importance for the agglomeration process of phosphorite. In this study, the thermal kinetic analysis method was used to study the kinetics of the decomposition of phosphorite concentrate. The phosphorite concentrate was heated under various heating rate, and the phases in the sample heated were examined by the X-ray diffraction method. It was found that the main phases in the phosphorite are fluorapatiteCa5(PO4)3F, quartz SiO2,and dolomite CaMg(CO3)2.The endothermic DSC peak corresponding to the mass loss caused by the decomposition of dolomite covers from 600°C to 850°C. The activation energy of the decomposition of dolomite, which increases with the increase in the extent of conversion, is about 71.6~123.6kJ/mol. The mechanism equation for the decomposition of dolomite agrees with the Valensi equation and G-B equation

    The Design and Its Application in Secure Communication and Image Encryption of a New Lorenz-Like System with Varying Parameter

    Get PDF
    A new Lorenz-like chaotic system with varying parameter is proposed by adding a state feedback function. The structure of the new designed system is simple and has more complex dynamic behaviors. The chaos behavior of the new system is studied by theoretical analysis and numerical simulation. And the bifurcation diagram shows a chaos-cycle-chaos evolution when the new parameter changes. Then a new synchronization scheme by a single state variable drive is given based on the new system and a chaotic parameter modulation digital secure communication system is also constructed. The results of simulation demonstrate that the new proposed system could be well applied in secure communication. Otherwise, based on the new system, the encryption and decryption of image could be achieved also

    Downregulation of E-Cadherin enhances proliferation of head and neck cancer through transcriptional regulation of EGFR

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Epidermal growth factor receptor (EGFR) has been reported to downregulate E-cadherin (E-cad); however, whether the downregulation of E-cad has any effect on EGFR expression has not been elucidated. Our previous studies have found an inverse correlation between EGFR and E-cad expression in tissue specimens of squamous cell carcinoma of the head and neck (SCCHN). To understand the biological mechanisms underlying this clinical observation, we knocked down E-cad expression utilizing E-cad siRNA in four SCCHN cell lines.</p> <p>Results</p> <p>It was observed that downregulation of E-cad upregulated EGFR expression compared with control siRNA-transfected cells after 72 hours. Cellular membrane localization of EGFR was also increased. Consequently, downstream signaling molecules of the EGFR signaling pathway, p-AKT, and p-ERK, were increased at 72 hours after the transfection with E-cad siRNA. Reverse transcriptase-polymerase chain reaction (RT-PCR) showed EGFR mRNA was upregulated by E-cad siRNA as early as 24 hours. In addition, RT-PCR revealed this upregulation was due to the increase of EGFR mRNA stability, but not protein stability. Sulforhodamine B (SRB) assay indicated growth of E-cad knocked down cells was enhanced up to 2-fold more than that of control siRNA-transfected cells at 72-hours post-transfection. The effect of E-cad reduction on cell proliferation was blocked by treating the E-cad siRNA-transfected cells with 1 μM of the EGFR-specific tyrosine kinase inhibitor erlotinib.</p> <p>Conclusion</p> <p>Our results suggest for the first time that reduction of E-cad results in upregulation of EGFR transcriptionally. It also suggests that loss of E-cad may induce proliferation of SCCHN by activating EGFR and its downstream signaling pathways.</p

    HSP70: a promising target for laryngeal carcinoma radiaotherapy by inhibiting cleavage and degradation of nucleolin

    Get PDF
    Previous studies have shown that heat shock proteins (HSPs) were upregulated in various types of tumors and were associated with histological grade, recurrence and metastasis of malignant tumors. In this study, we investigated whether heat shock protein 70 kDa (HSP70) was associated with histological grade of laryngeal squamous cell carcinomas (LSCC). We also determine the role of HSP70 in LSCC radiation resistance using a laryngeal carcinoma xenograft model by antisense HSP70 RNA technique. Immunohistochemistry data showed that HSP70 was detected in 96% of LSCC tissues (48 out of 50). The expression level of HSP70 was significantly lower in early stage of LSCC than that in late stage (P = 0.015). Radiation treatment result showed that the volumes and weights of implantation tumors in the group injected with antisense HSP70 oligos were significantly reduced comparing to the group injected with random oligos(p < 0.05). In addition, cleavage and degradation of tumor nucleolin in antisense HSP70 oligos injection group was significantly higher than that in random oligos injection group. Our result suggested that HSP70 may play a role in LSCC radiotherapy resistance by inhibiting cleavage and degradation of nucleolin

    PO-304 Caffeine Supplementation Altered Metabolic Profiles in High-intensity Interval Training

    Get PDF
    Objective Caffeine supplementation is a commonly used nutritional practice. Exogenous metabolites from caffeine, such as paraxanthine, theobromine and theophylline, are eventually excreted through urine. Yet, it is less clear whether caffeine would induce endogenous metabolites altered during exercise. Urine metabolomics is non-invasive method, which mainly focus on alterations of endogenous metabolic profiles caused by diseases, drugs, and lifestyle and nutritional interventions as well. Therefore, the purpose of the present study was to examine the effects of supplementation with caffeine in a well-designed high intensity interval training (HITT). We identified significant alterations in urinary metabolite levels and revealed key metabolic pathways involved in caffeine supplementation in HITT. Methods We performed a randomized, double-blind, placebo- controlled crossover study. Twelve women basketball players (age:19.12 ± 2.64 years, mass: 174.73 ± 5.18 cm, height: 62 ± 5.09 kg, with 8.50±2.11 years training period for basketball) were randomized to placebo (PLA) or caffeine (CAF) with dosage of 3mg on the basis of body weight (kg) 45min before a field HITT test. The test was repeated after three days when players were crossed over to the alternate test. The test began with a 30 min warmup, followed by a high intensity intermittent exercise trail with incremental load for about 25min, and a cool-down. Players are familiar with the test program which included 55 sets of dribble shuttle-run, pass, shoot, and rebound with basketball with a distance of 1540m (55 × 28m), the interval between two sets was gradually reduced. Performance (completed time), heart rates immediate (HR0min) and 1 min (HR1min) after test, blood lactate (BLa), proteinuria and ratings of perceived exertion (RPE) were collected during each protocol. Urine samples were obtained before and 1 h after of the test. 1H-NMR spectra (Bruker AVANCE III HD 600MHz) were obtained and then processed by NMR spectra (MestReNova 9.0). The binning values of NMR spectra are imported into MATLAB, and the peaks are aligned with the icoshift algorithm. Then concentrations of the aligned metabolites were calculated by converting the integral area of proton signals with that of the TSP. Pattern recognition was performed to the processed NMR data, including principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA). Characteristic metabolites were identified that contribute most to the metabolic pattern between groups according to the OPLS-DA models. Finally, we analyzed the metabolic pathway by importing characteristic metabolites with concentrations into the Enrichment Analysis (MetaboAnalysis 3.0) to determine the metabolic pathways with the greatest disturbance related to caffeine during exercise. Moreover, the main effects of exercise, caffeine and the interaction between exercise and caffeine were determined by Repeated measure GLM analysis (Spss 22.0). Results (1) Compared with PLA, CAF had no significant difference in the completed time (25.9 min vs. 26.8 min). Repeated measured analysis showed that there was significant overall time effect on the routine training monitoring parameters, while no statistically group differences in HR0min, HR1min, BLa (199.02±21.36 vs.189.00±22.38 bpm; 148.02±12.60 vs.148.02±20.34 bpm, and 8.89±2.23 vs. 9.52±2.91 mmol/L, respectively). For the qualitative indexes, the positive rate of urine ketone bodies was increased, while RPE did not changed. (2) We identified 32 metabolites in urine sample. PCA showed distinct differentiation of metabolic patterns between each two groups in the four groups (PLAbefore, PLApost, CAFbefore, CAFafter). By using OPLS-DA, we found that the urine metabolic profiles were differences in between caffeine supplementation group and placebo group during the test. OPLS-DA revealed the identified metabolites of exercise and caffeine respectively, among them, lactate, butyric acid, isobutyric acid, 3-hydroxybutyric acid and pyruvic acid could be used as metabolic biomarkers in the HITT response. Supplementation of caffeine increased the production of fat metabolites in urine compared to the PLA. Enrichment analysis showed that the disturbed metabolic pathways shared by PLA and CAF were purine metabolism, glycolysis, insulin signal transduction, galactose metabolism, gluconeogenesis, glucose-alanine cycle, sphingolipid metabolism, alanine metabolism and citric acid cycle. Yet, when compared to the PLA, CAF enhanced fat metabolism and increased pyruvate metabolism, cysteine metabolism and mitochondrial electron transport. These results suggest that caffeine could promote fatty acid metabolism and amino acid metabolism to improve aerobic metabolism and to reduce oxidative stress, and thus promote exercise capacity. (3) Covariance analysis showed that there were significant individual-specific effects of caffeine supplementation. Conclusions Caffeine supplementation during HITT promoted the fat metabolism, and upregulated the TCA, pyruvate metabolism and mitochondrial electron transfer. It is suggested that caffeine could, to some extent, promote energy supply shift from anaerobic metabolic to an aerobic manner, and the enhancement of fat oxidation would be beneficial to glycogen storage for intensively long-duration exercise. Moreover, there are obvious individual differences in caffeine response on sports

    Transcription Factor Crosstalk and Regulatory Networks in Hypopharyngeal Squamous Cell Carcinoma

    Get PDF
    licenses/by-nc-nd/3.0/). Reproduction is permitted for personal, noncommercial use, provided that the article is in whole, unmodified, and properly cited. Received: 2014.03.24; Accepted: 2014.04.18; Published: 2014.06.16 To date, no effective therapeutic treatments have been developed for hypopharyngeal squamous cell carcinoma (HPSCC), a disease that has a five-year survival rate of approximately 31 % because of its late diagnosis and aggressive nature. Despite recent improvements in diagnostic methods, there are no effective measures to prevent or detect HPSCC in an early stage. The goal of the current study was to identify molecular biomarkers and networks that can facilitate the speedy identification of HPSCC patients who could benefit from individualized treatment. Isobaric tags for relative and absolute quantification (iTRAQ) labeling was employed with two-dimensional liquid chromatography-tandem mass spectrometry to identify quantitatively the differentially expressed proteins among three types of HPSCC disease stages. The iTRAQ results were evaluated by literature searches and western blot analysis. For example, FUBP1, one of 412 proteins with significantl

    Effects of Roughness Length Parameterizations on Regional-Scale Land Surface Modeling of Alpine Grasslands in the Yangtze River Basin

    Get PDF
    Abstract Current land surface models (LSMs) tend to largely underestimate the daytime land surface temperature for high-altitude regions. This is partly because of underestimation of heat transfer resistance, which may be resolved through adequate parameterization of roughness lengths for momentum and heat transfer. In this paper, the regional-scale effects of the roughness length parameterizations for alpine grasslands are addressed and the performance of the Noah LSM using the updated roughness lengths compared to the original ones is assessed. The simulations were verified with various satellite products and validated with ground-based observations. More specifically, four experimental setups were designed using two roughness length schemes with two different parameterizations of (original and updated). These experiments were conducted in the source region of the Yangtze River during the period 2005–10 using the Noah LSM. The results show that the updated parameterizations of roughness lengths reduce the mean biases of the simulated daytime in spring, autumn, and winter by up to 2.7 K, whereas larger warm biases are produced in summer. Moreover, model efficiency coefficients (Nash–Sutcliffe) of the monthly runoff results are improved by up to 26.3% when using the updated roughness parameterizations. In addition, the spatial effects of the roughness length parameterizations on the simulations are discussed. This study stresses the importance of proper parameterizations of and for LSMs and highlights the need for regional adaptation of the and values.</jats:p
    corecore