92 research outputs found

    Large-scale analysis of microRNA expression, epi-transcriptomic features and biogenesis.

    Get PDF
    MicroRNAs are important genetic regulators in both animals and plants. They have a range of functions spanning development, differentiation, growth, metabolism and disease. The advent of next-generation sequencing technologies has made it a relatively straightforward task to detect these molecules and their relative expression via sequencing. There are a large number of published studies with deposited datasets. However, there are currently few resources that capitalize on these data to better understand the features, distribution and biogenesis of miRNAs. Herein, we focus on Human and Mouse for which the majority of data are available. We reanalyse sequencing data from 461 samples into a coordinated catalog of microRNA expression. We use this to perform large-scale analyses of miRNA function and biogenesis. These analyses include global expression comparison, co-expression of miRNA clusters and the prediction of miRNA strand-specificity and underlying constraints. Additionally, we report for the first time a global analysis of miRNA epi-transcriptomic modifications and assess their prevalence across tissues, samples and families. Finally, we report a list of potentially mis-annotated miRNAs in miRBase based on their aggregated modification profiles. The results have been collated into a comprehensive online repository of miRNA expression and features such as modifications and RNA editing events, which is available at: http://wwwdev.ebi.ac.uk/enright-dev/miratlas. We believe these findings will further contribute to our understanding of miRNA function in animals and benefit the miRNA community in general

    miRBase: microRNA sequences, targets and gene nomenclature.

    Get PDF
    The miRBase database aims to provide integrated interfaces to comprehensive microRNA sequence data, annotation and predicted gene targets. miRBase takes over functionality from the microRNA Registry and fulfils three main roles: the miRBase Registry acts as an independent arbiter of microRNA gene nomenclature, assigning names prior to publication of novel miRNA sequences. miRBase Sequences is the primary online repository for miRNA sequence data and annotation. miRBase Targets is a comprehensive new database of predicted miRNA target genes. miRBase is available at http://microrna.sanger.ac.uk/

    Mirnovo: genome-free prediction of microRNAs from small RNA sequencing data and single-cells using decision forests.

    Get PDF
    The discovery of microRNAs (miRNAs) remains an important problem, particularly given the growth of high-throughput sequencing, cell sorting and single cell biology. While a large number of miRNAs have already been annotated, there may well be large numbers of miRNAs that are expressed in very particular cell types and remain elusive. Sequencing allows us to quickly and accurately identify the expression of known miRNAs from small RNA-Seq data. The biogenesis of miRNAs leads to very specific characteristics observed in their sequences. In brief, miRNAs usually have a well-defined 5' end and a more flexible 3' end with the possibility of 3' tailing events, such as uridylation. Previous approaches to the prediction of novel miRNAs usually involve the analysis of structural features of miRNA precursor hairpin sequences obtained from genome sequence. We surmised that it may be possible to identify miRNAs by using these biogenesis features observed directly from sequenced reads, solely or in addition to structural analysis from genome data. To this end, we have developed mirnovo, a machine learning based algorithm, which is able to identify known and novel miRNAs in animals and plants directly from small RNA-Seq data, with or without a reference genome. This method performs comparably to existing tools, however is simpler to use with reduced run time. Its performance and accuracy has been tested on multiple datasets, including species with poorly assembled genomes, RNaseIII (Drosha and/or Dicer) deficient samples and single cells (at both embryonic and adult stage)

    miRBase: tools for microRNA genomics.

    Get PDF
    miRBase is the central online repository for microRNA (miRNA) nomenclature, sequence data, annotation and target prediction. The current release (10.0) contains 5071 miRNA loci from 58 species, expressing 5922 distinct mature miRNA sequences: a growth of over 2000 sequences in the past 2 years. miRBase provides a range of data to facilitate studies of miRNA genomics: all miRNAs are mapped to their genomic coordinates. Clusters of miRNA sequences in the genome are highlighted, and can be defined and retrieved with any inter-miRNA distance. The overlap of miRNA sequences with annotated transcripts, both protein- and non-coding, are described. Finally, graphical views of the locations of a wide range of genomic features in model organisms allow for the first time the prediction of the likely boundaries of many miRNA primary transcripts. miRBase is available at http://microrna.sanger.ac.uk/

    Construction, visualisation, and clustering of transcription networks from microarray expression data.

    Get PDF
    Network analysis transcends conventional pairwise approaches to data analysis as the context of components in a network graph can be taken into account. Such approaches are increasingly being applied to genomics data, where functional linkages are used to connect genes or proteins. However, while microarray gene expression datasets are now abundant and of high quality, few approaches have been developed for analysis of such data in a network context. We present a novel approach for 3-D visualisation and analysis of transcriptional networks generated from microarray data. These networks consist of nodes representing transcripts connected by virtue of their expression profile similarity across multiple conditions. Analysing genome-wide gene transcription across 61 mouse tissues, we describe the unusual topography of the large and highly structured networks produced, and demonstrate how they can be used to visualise, cluster, and mine large datasets. This approach is fast, intuitive, and versatile, and allows the identification of biological relationships that may be missed by conventional analysis techniques. This work has been implemented in a freely available open-source application named BioLayout Express(3D)

    Exploring regulatory networks of miR-96 in the developing inner ear.

    Get PDF
    Mutations in the microRNA Mir96 cause deafness in mice and humans. In the diminuendo mouse, which carries a single base pair change in the seed region of miR-96, the sensory hair cells crucial for hearing fail to develop fully and retain immature characteristics, suggesting that miR-96 is important for coordinating hair cell maturation. Our previous transcriptional analyses show that many genes are misregulated in the diminuendo inner ear and we report here further misregulated genes. We have chosen three complementary approaches to explore potential networks controlled by miR-96 using these transcriptional data. Firstly, we used regulatory interactions manually curated from the literature to construct a regulatory network incorporating our transcriptional data. Secondly, we built a protein-protein interaction network using the InnateDB database. Thirdly, gene set enrichment analysis was used to identify gene sets in which the misregulated genes are enriched. We have identified several candidates for mediating some of the expression changes caused by the diminuendo mutation, including Fos, Myc, Trp53 and Nr3c1, and confirmed our prediction that Fos is downregulated in diminuendo homozygotes. Understanding the pathways regulated by miR-96 could lead to potential therapeutic targets for treating hearing loss due to perturbation of any component of the network

    MiR-277/4989 regulate transcriptional landscape during juvenile to adult transition in the parasitic helminth Schistosoma mansoni.

    Get PDF
    Schistosomes are parasitic helminths that cause schistosomiasis, a disease affecting circa 200 million people, primarily in underprivileged regions of the world. Schistosoma mansoni is the most experimentally tractable schistosome species due to its ease of propagation in the laboratory and the high quality of its genome assembly and annotation. Although there is growing interest in microRNAs (miRNAs) in trematodes, little is known about the role these molecules play in the context of developmental processes. We use the completely unaware "miRNA-blind" bioinformatics tool Sylamer to analyse the 3'-UTRs of transcripts differentially expressed between the juvenile and adult stages. We show that the miR-277/4989 family target sequence is the only one significantly enriched in the transition from juvenile to adult worms. Further, we describe a novel miRNA, sma-miR-4989 showing that its proximal genomic location to sma-miR-277 suggests that they form a miRNA cluster, and we propose hairpin folds for both miRNAs compatible with the miRNA pathway. In addition, we found that expression of sma-miR-277/4989 miRNAs are up-regulated in adults while their predicted targets are characterised by significant down-regulation in paired adult worms but remain largely undisturbed in immature "virgin" females. Finally, we show that sma-miR-4989 is expressed in tegumental cells located proximal to the oesophagus gland and also distributed throughout the male worms' body. Our results indicate that sma-miR-277/4989 might play a dominant role in post-transcriptional regulation during development of juvenile worms and suggest an important role in the sexual development of female schistosomes

    The two most common histological subtypes of malignant germ cell tumour are distinguished by global microRNA profiles, associated with differential transcription factor expression.

    Get PDF
    BACKGROUND: We hypothesised that differences in microRNA expression profiles contribute to the contrasting natural history and clinical outcome of the two most common types of malignant germ cell tumour (GCT), yolk sac tumours (YSTs) and germinomas. RESULTS: By direct comparison, using microarray data for paediatric GCT samples and published qRT-PCR data for adult samples, we identified microRNAs significantly up-regulated in YSTs (n = 29 paediatric, 26 adult, 11 overlapping) or germinomas (n = 37 paediatric). By Taqman qRT-PCR we confirmed differential expression of 15 of 16 selected microRNAs and further validated six of these (miR-302b, miR-375, miR-200b, miR-200c, miR-122, miR-205) in an independent sample set. Interestingly, the miR-302 cluster, which is over-expressed in all malignant GCTs, showed further over-expression in YSTs versus germinomas, representing six of the top eight microRNAs over-expressed in paediatric YSTs and seven of the top 11 in adult YSTs. To explain this observation, we used mRNA expression profiles of paediatric and adult malignant GCTs to identify 10 transcription factors (TFs) consistently over-expressed in YSTs versus germinomas, followed by linear regression to confirm associations between TF and miR-302 cluster expression levels. Using the sequence motif analysis environment iMotifs, we identified predicted binding sites for four of the 10 TFs (GATA6, GATA3, TCF7L2 and MAF) in the miR-302 cluster promoter region. Finally, we showed that miR-302 family over-expression in YST is likely to be functionally significant, as mRNAs down-regulated in YSTs were enriched for 3' untranslated region sequences complementary to the common seed of miR-302a~miR-302d. Such mRNAs included mediators of key cancer-associated processes, including tumour suppressor genes, apoptosis regulators and TFs. CONCLUSIONS: Differential microRNA expression is likely to contribute to the relatively aggressive behaviour of YSTs and may enable future improvements in clinical diagnosis and/or treatment.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are

    Plasma cells are not restricted to the CD27+ phenotype:characterization of CD27-CD43+ antibody-secreting cells

    Get PDF
    Circulating antibody-secreting cells are present in the peripheral blood of healthy individuals reflecting the continued activity of the humoral immune system. Antibody-secreting cells typically express CD27. Here we describe and characterize a small population of antibody-secreting class switched CD19+CD43+ B cells that lack expression of CD27 in the peripheral blood of healthy subjects. In this study, we characterized CD27-CD43+ cells. We demonstrate that class-switched CD27-CD43+ B cells possess characteristics of conventional plasmablasts as they spontaneously secrete antibodies, are morphologically similar to antibody-secreting cells, show downregulation of B cell differentiation markers, and have a gene expression profile related to conventional plasmablasts. Despite these similarities, we observed differences in IgA and IgG subclass distribution, expression of homing markers, replication history, frequency of somatic hypermutation, immunoglobulin repertoire, gene expression related to Toll-like receptors, cytokines, and cytokine receptors, and antibody response to vaccination. Their frequency is altered in immune-mediated disorders. Conclusion: we characterized CD27-CD43+ cells as antibody-secreting cells with differences in function and homing potential as compared to conventional CD27+ antibody-secreting cells.</p
    • …
    corecore