41 research outputs found

    Screening biomarkers for Sjogren’s Syndrome by computer analysis and evaluating the expression correlations with the levels of immune cells

    Get PDF
    BackgroundSjögren’s syndrome (SS) is a systemic autoimmune disease that affects about 0.04-0.1% of the general population. SS diagnosis depends on symptoms, clinical signs, autoimmune serology, and even invasive histopathological examination. This study explored biomarkers for SS diagnosis.MethodsWe downloaded three datasets of SS patients’ and healthy pepole’s whole blood (GSE51092, GSE66795, and GSE140161) from the Gene Expression Omnibus (GEO) database. We used machine learning algorithm to mine possible diagnostic biomarkers for SS patients. Additionally, we assessed the biomarkers’ diagnostic value using the receiver operating characteristic (ROC) curve. Moreover, we confirmed the expression of the biomarkers through the reverse transcription quantitative polymerase chain reaction (RT-qPCR) using our own Chinese cohort. Eventually, the proportions of 22 immune cells in SS patients were calculated by CIBERSORT, and connections between the expression of the biomarkers and immune cell ratios were studied.ResultsWe obtained 43 DEGs that were mainly involved in immune-related pathways. Next, 11 candidate biomarkers were selected and validated by the validation cohort data set. Besides, the area under curves (AUC) of XAF1, STAT1, IFI27, HES4, TTC21A, and OTOF in the discovery and validation datasets were 0.903 and 0.877, respectively. Subsequently, eight genes, including HES4, IFI27, LY6E, OTOF, STAT1, TTC21A, XAF1, and ZCCHC2, were selected as prospective biomarkers and verified by RT-qPCR. Finally, we revealed the most relevant immune cells with the expression of HES4, IFI27, LY6E, OTOF, TTC21A, XAF1, and ZCCHC2.ConclusionIn this paper, we identified seven key biomarkers that have potential value for diagnosing Chinese SS patients

    Comprehensive bulk and single-cell transcriptome profiling give useful insights into the characteristics of osteoarthritis associated synovial macrophages

    Get PDF
    BackgroundOsteoarthritis (OA) is a common chronic joint disease, but the association between molecular and cellular events and the pathogenic process of OA remains unclear.ObjectiveThe study aimed to identify key molecular and cellular events in the processes of immune infiltration of the synovium in OA and to provide potential diagnostic and therapeutic targets.MethodsTo identify the common differential expression genes and function analysis in OA, we compared the expression between normal and OA samples and analyzed the protein–protein interaction (PPI). Additionally, immune infiltration analysis was used to explore the differences in common immune cell types, and Gene Set Variation Analysis (GSVA) analysis was applied to analyze the status of pathways between OA and normal groups. Furthermore, the optimal diagnostic biomarkers for OA were identified by least absolute shrinkage and selection operator (LASSO) models. Finally, the key role of biomarkers in OA synovitis microenvironment was discussed through single cell and Scissor analysis.ResultsA total of 172 DEGs (differentially expressed genes) associated with osteoarticular synovitis were identified, and these genes mainly enriched eight functional categories. In addition, immune infiltration analysis found that four immune cell types, including Macrophage, B cell memory, B cell, and Mast cell were significantly correlated with OA, and LASSO analysis showed that Macrophage were the best diagnostic biomarkers of immune infiltration in OA. Furthermore, using scRNA-seq dataset, we also analyzed the cell communication patterns of Macrophage in the OA synovial inflammatory microenvironment and found that CCL, MIF, and TNF signaling pathways were the mainly cellular communication pathways. Finally, Scissor analysis identified a population of M2-like Macrophages with high expression of CD163 and LYVE1, which has strong anti-inflammatory ability and showed that the TNF gene may play an important role in the synovial microenvironment of OA.ConclusionOverall, Macrophage is the best diagnostic marker of immune infiltration in osteoarticular synovitis, and it can communicate with other cells mainly through CCL, TNF, and MIF signaling pathways in microenvironment. In addition, TNF gene may play an important role in the development of synovitis

    Identification and Validation of Immune-Related Gene Prognostic Signature for Hepatocellular Carcinoma

    No full text
    Immune-related genes (IRGs) have been identified as critical drivers of the initiation and progression of hepatocellular carcinoma (HCC). This study is aimed at constructing an IRG signature for HCC and validating its prognostic value in clinical application. The prognostic signature was developed by integrating multiple IRG expression data sets from TCGA and GEO databases. The IRGs were then combined with clinical features to validate the robustness of the prognostic signature through bioinformatics tools. A total of 1039 IRGs were identified in the 657 HCC samples. Subsequently, the IRGs were subjected to univariate Cox regression and LASSO Cox regression analyses in the training set to construct an IRG signature comprising nine immune-related gene pairs (IRGPs). Functional analyses revealed that the nine IRGPs were associated with tumor immune mechanisms, including cell proliferation, cell-mediated immunity, and tumorigenesis signal pathway. Concerning the overall survival rate, the IRGPs distinctly grouped the HCC samples into the high- and low-risk groups. Also, we found that the risk score based on nine IRGPs was related to clinical and pathologic factors and remained a valid independent prognostic signature after adjusting for tumor TNM, grade, and grade in multivariate Cox regression analyses. The prognostic value of the nine IRGPs was further validated by forest and nomogram plots, which revealed that it was superior to the tumor TNM, grade, and stage. Our findings suggest that the nine-IRGP signature can be effective in determining the disease outcomes of HCC patients

    Analysis of proteome and post-translational modifications of 2-hydroxyisobutyrylation reveals the glycolysis pathway in oral adenoid cystic carcinoma

    No full text
    Abstract Purpose Oral adenoid cystic carcinoma (OACC) has high rates of both local–regional recurrence and distant metastasis. The objective of this study is to investigate the impact of Khib on OACC and its potential as a targeted therapeutic intervention. Experimental design We investigated the DEPs (differentially expressed proteins) and DHMPs between OACC-T and OACC-N using LC–MS/MS-based quantitative proteomics and using several bioinformatics methods, including GO enrichment analysis, KEGG pathway analysis, subcellular localization prediction, MEA (motif enrichment analysis), and PPI (protein–protein interaction networks) to illustrate how Khib modification interfere with OACC evolution. Results Compared OACC-tumor samples (OACC-T) with the adjacent normal samples (OACC-N), there were 3243 of the DEPs and 2011 Khib sites were identified on 764 proteins (DHMPs). DEPs and DHMPs were strongly associated to glycolysis pathway. GAPDH of K254, ENO of K228, and PGK1 of K323 were modified by Khib in OACC-T. Khib may increase the catalytic efficiency to promote glycolysis pathway and favor OACC progression. Conclusions and clinical relevance Khib may play a significant role in the mechanism of OACC progression by influencing the enzyme activity of the glycolysis pathway. These findings may provide new therapeutic options of OACC

    Liver proteomic analysis reveals the key proteins involved in host immune response to sepsis

    No full text
    Background Sepsis is a serious infection-induced response in the host, which can result in life-threatening organ dysfunction. It is of great importance to unravel the relationship between sepsis and host immune response and its mechanisms of action. Liver is one of the most vulnerable organs in sepsis, however, the specific pathogenesis of septic liver injury has not been well understood at the protein level. Methods A total of 12 healthy Sprague–Dawley (SD) male rats aged from 6 to 8 weeks were adaptively housed in individual cages in the specific pathogen free animal room. These lab rats were grouped into two groups: treatment (N = 9) and control (N = 3) groups; only three mice from the treatment group survived and were used for subsequent experiments. A TMT-based proteomic analysis for liver tissue was performed in the septic rat model. Results A total of 37,012 unique peptides were identified, and then 6,166 proteins were determined, among which 5,701 were quantifiable. Compared to the healthy control group, the septic rat group exhibited 162 upregulated and 103 downregulated differentially expressed proteins (DEPs). The upregulated and downregulated DEPs were the most significantly enriched into the complement and coagulation cascades and metabolic pathways. Protein-protein interaction (PPI) analysis further revealed that the upregulated and downregulated DEPs each clustered in a PPI network. Several highly connected upregulated and downregulated DEPs were also enriched into the complement and coagulation cascades pathways and metabolic pathways, respectively. The parallel reaction monitoring (PRM) results of the selected DEPs were consistent with the results of the TMT analysis, supporting the proteomic data. Conclusion Our findings highlight the roles of complement and coagulation cascades and metabolic pathways that may play vital roles in the host immune response. The DEPs may serve as clinically potential treatment targets for septic liver injury

    Proteomic analysis of lysine 2-hydroxyisobutyryl in SLE reveals protein modification alteration in complement and coagulation cascades and platelet activation Pathways

    No full text
    Abstract Background Post-translational modifications (PTMs) are considered to be an important factor in the pathogenesis of Systemic lupus erythematosus (SLE). Lysine 2-hydroxyisobutyryl (Khib), as an emerging post-translational modification of proteins, is involved in some important biological metabolic activities. However, there are poor studies on its correlation with diseases, especially SLE. Objective We performed quantitative, comparative, and bioinformatic analysis of Khib proteins in Peripheral blood mononuclear cells (PBMCs) of SLE patients and PBMCs of healthy controls. Searching for pathways related to SLE disease progression and exploring the role of Khib in SLE. Methods Khib levels in SLE patients and healthy controls were compared based on liquid chromatography tandem mass spectrometry, then proteomic analysis was conducted. Results Compared with healthy controls, Khib in SLE patients was up-regulated at 865 sites of 416 proteins and down-regulated at 630 sites of 349 proteins. The site abundance, distribution and function of Khib protein were investigated further. Bioinformatics analysis showed that Complement and coagulation cascades and Platelet activation in immune-related pathways were significantly enriched, suggesting that differentially modified proteins among them may affect SLE. Conclusion Khib in PBMCs of SLE patients was significantly up- or down-regulated compared with healthy controls. Khib modification of key proteins in the Complement and coagulation cascades and Platelet activation pathways affects platelet activation and aggregation, coagulation functions in SLE patients. This result provides a new direction for the possible significance of Khib in the pathogenesis of SLE patients

    A report on seven fetal cases associated with 15q11‐q13 microdeletion and microduplication

    No full text
    Abstract Background The 15q11‐q13 region contains three breakpoints (BP1 to BP3), and copy number variations often occur in the region. Aims 15q11‐q13 microdeletion and microduplication are usually associated with Prader‐Willi and Angelman syndromes, respectively. It is not yet clear to what extent microdeletion and microduplication affect the physical health of the fetus and the child. In this study, we examined seven fetuses ranging in gestational age from 15 to 27 weeks. Materials & Methods Detailed prenatal screening and laboratory examinations were performed, while karyotype analysis and chromosomal microarray analysis (CMA) of the amniotic fluid and umbilical cord blood were applied for genetic analysis. Results CMA analysis showed that four fetuses harbored a microdeletion and one fetus showed a microduplication at 15q11.2 BP1‐BP2, two fetuses had a microdeletion at 15q11‐q13 BP2‐BP3, and one fetus had an additional microdeletion at 16p13.11. Discussion There is no clear standard for the clinical diagnosis of 15q11‐q13 microdeletion and microduplication, some of them have clinical phenotypes or are clinically affected. Conclusion Therefore, parents of such fetuses should be informed of the possibility of microdeletions or microduplications to mitigate the psychological burden, and medical consultation and assistance should be provided when communicating the results of the mid‐gestation screening

    Verification of foetal Down syndrome biomarker proteins in maternal plasma and applications in prenatal screening for Down syndrome

    No full text
    Abstract Background Down Syndrome (DS) has a very high morbidity, according to statistics, the incidence rate of DS is as high as 1:700 among the new born babies. At present, there are still no effective prevention or treatment methods for the disease. We used a Western Blot technique to validate differentially expressed proteins between DS foetal umbilical cord blood plasma and healthy foetal peripheral blood plasma from pregnant women to identify new prenatal diagnostic biomarkers for down syndrome (DS) and establish a new non-invasive prenatal diagnosis method. Methods We collected maternal peripheral blood (8 with foetal DS and 8 from normal foetuses) from April 2013 to January 2014, and separated the plasma. We combined the clinical characteristics and clinical differentially expressed proteins between DS foetal umbilical cord blood plasma and healthy foetal umbilical cord blood plasma to identify specific protein marker candidates and prepared monoclonal antibodies, which were then used for Western Blot technique to analyse the candidate markers. Results In the DS foetal maternal plasma, serum amyloid P-component, Apolipoprotein E, Nucleosome assembly protein 1-like 1, Complement factor B,ERO1-like protein alpha, 2-oxoglutarate dehydrogenase-like, and Thymosin beta 10 were up-regulated proteins compared to the healthy control group, and the DS group showed higher expression, which agreed with the results from the DS foetal umbilical cord blood plasma. Conclusion The up-regulated amyloid P-component, Apolipoprotein E, Nucleosome assembly protein 1-like 1, Complement factor B, ERO1-like protein alpha, 2-oxoglutarate dehydrogenase-like, Thymosin beta 10 all are up-regulation, all of them have potential to be prenatal diagnosis biomarkers for DS, and these biomarkers can further reveal the pathogenesis of DS
    corecore