6,661 research outputs found
Miniature High-Sensitivity High-Temperature Fiber Sensor with a Dispersion Compensation Fiber-Based Interferometer
A miniature high-sensitivity, high-temperature fiber sensor with an interferometer based on a bare small-core-diameter dispersion compensation fiber (DCF) is reported. The sensing head is a single-mode-fiber (SMF) DCF configuration formed by a 4 mm long bare DCF with one end connected to the SMF by a fusion splicing technique and the other end cleaved. Due to the large mode index difference and high thermo-optic coefficient induced by two dominative interference modes, a miniature high-temperature fiber sensor with a high sensitivity of 68.6 pm/Β°C is obtained by monitoring the wavelength shift of the interference spectrum. This type of sensor has the features of small size, high sensitivity, high stability, simple structure, and low cost
The progenitors of Type Ia supernovae with long delay times
The nature of the progenitors of Type Ia supernovae (SNe Ia) is still
unclear. In this paper, by considering the effect of the instability of
accretion disk on the evolution of white dwarf (WD) binaries, we performed
binary evolution calculations for about 2400 close WD binaries, in which a
carbon--oxygen WD accretes material from a main-sequence star or a slightly
evolved subgiant star (WD + MS channel), or a red-giant star (WD + RG channel)
to increase its mass to the Chandrasekhar (Ch) mass limit. According to these
calculations, we mapped out the initial parameters for SNe Ia in the orbital
period--secondary mass () plane for various WD
masses for these two channels, respectively. We confirm that WDs in the WD + MS
channel with a mass as low as can accrete efficiently and reach
the Ch limit, while the lowest WD mass for the WD + RG channel is . We have implemented these results in a binary population synthesis
study to obtain the SN Ia birthrates and the evolution of SN Ia birthrates with
time for both a constant star formation rate and a single starburst. We find
that the Galactic SN Ia birthrate from the WD + MS channel is according to our standard model, which is higher than
previous results. However, similar to previous studies, the birthrate from the
WD + RG channel is still low (). We also
find that about one third of SNe Ia from the WD + MS channel and all SNe Ia
from the WD + RG channel can contribute to the old populations (\ga1 Gyr) of
SN Ia progenitors.Comment: 11 pages, 9 figures, 1 table, accepted for publication in MNRA
Standing sausage modes in coronal loops with plasma flow
Magnetohydrodynamic waves are important for diagnosing the physical
parameters of coronal plasmas. Field-aligned flows appear frequently in coronal
loops.We examine the effects of transverse density and plasma flow structuring
on standing sausage modes trapped in coronal loops, and examine their
observational implications. We model coronal loops as straight cold cylinders
with plasma flow embedded in a static corona. An eigen-value problem governing
propagating sausage waves is formulated, its solutions used to construct
standing modes. Two transverse profiles are distinguished, one being the
generalized Epstein distribution (profile E) and the other (N) proposed
recently in Nakariakov et al.(2012). A parameter study is performed on the
dependence of the maximum period and cutoff length-to-radius
ratio in the trapped regime on the density parameters
( and profile steepness ) and flow parameters (magnitude
and profile steepness ). For either profile, introducing a flow
reduces relative to the static case. depends
sensitively on for profile N but is insensitive to for profile E. By
far the most important effect a flow introduces is to reduce the capability for
loops to trap standing sausage modes: may be
substantially reduced in the case with flow relative to the static one. If the
density distribution can be described by profile N, then measuring the sausage
mode period can help deduce the density profile steepness. However, this
practice is not feasible if profile E better describes the density
distribution. Furthermore, even field-aligned flows with magnitudes
substantially smaller than the ambient Alfv\'en speed can make coronal loops
considerably less likely to support trapped standing sausage modes.Comment: 11 pages, 9 figures, to appear in Astronomy & Astrophysic
- β¦