5,070 research outputs found

    CT Image Reconstruction by Spatial-Radon Domain Data-Driven Tight Frame Regularization

    Full text link
    This paper proposes a spatial-Radon domain CT image reconstruction model based on data-driven tight frames (SRD-DDTF). The proposed SRD-DDTF model combines the idea of joint image and Radon domain inpainting model of \cite{Dong2013X} and that of the data-driven tight frames for image denoising \cite{cai2014data}. It is different from existing models in that both CT image and its corresponding high quality projection image are reconstructed simultaneously using sparsity priors by tight frames that are adaptively learned from the data to provide optimal sparse approximations. An alternative minimization algorithm is designed to solve the proposed model which is nonsmooth and nonconvex. Convergence analysis of the algorithm is provided. Numerical experiments showed that the SRD-DDTF model is superior to the model by \cite{Dong2013X} especially in recovering some subtle structures in the images

    Spin-Liquid State for Two-Dimensional Heisenberg Antiferromagnets on a Triangular Lattice

    Full text link
    The spin liquid state of the antiferromagnetic Heisenberg model on a triangular lattice is studied within the self-consistent Green's function method. It is shown that the spin excitation spectra is gapless, and ground-state energy per site is Eg/NJ=βˆ’0.966E_{g}/NJ=-0.966, which is in very good agreement with the results obtained within the variational Monte Carlo method based on the resonating-valence-bond state. Some thermodynamic properties are also discussed.Comment: 4 pages, Revtex, Three figures are not included, and can be obtained by request ([email protected]

    Riemann-Liouville Fractional Cosine Functions

    Full text link
    In this paper, a new notion, named Riemann-Liouville fractional cosine function is presented. It is proved that a Riemann-Liouville Ξ±\alpha-order fractional cosine function is equivalent to Riemann-Liouville Ξ±\alpha-order fractional resolvents introduced in [Z.D. Mei, J.G. Peng, Y. Zhang, Math. Nachr. 288, No. 7, 784-797 (2015)]

    Experimental study of a counter-flow regenerative evaporative cooler

    Get PDF
    This paper aims to investigate the operational performance and impact factors of a counter-flow regenerative evaporative cooler (REC). This was undertaken through a dedicated experimental process. Temperature, humidity and flow rate of the air flows at the inlet, outlet and exhaust opening of the cooler were tested under various operational conditions, i.e., different inlet air conditions, feed water temperature and evaporation rate were also correspondingly measured. It was found that the wet-bulb effectiveness of the presented cooler ranged from 0.55 to 1.06 with Energy Efficiency Ratio (EER) rated from 2.8 to 15.5. The major experimental results were summarised below: 1) the wet-bulb effectiveness was significantly enhanced through either ways of increasing inlet wet-bulb depression or reducing intake air velocity, or alternatively by increasing working-to-intake air ratio; 2) the cooling capacity and EER of cooler was rapidly increased by means of increasing inlet wet-bulb depression or increasing intake air velocity, or reducing working-to-intake air ratio instead; 3) the effectiveness reduced by less 5% while feed water temperature increased from 18.9 to 23.1Β°C; 4) apparent acceleration in water evaporation rate was gained from increasing inlet wet-bulb depression or air velocity. The presented cooler showed 31% increase in wet-bulb effectiveness and 40% growth in EER compared to conventional indirect evaporative cooler. The research helped identifying the performance of a new REC with enhanced performance and thus contributed to development of energy efficient air conditioning technologies, which eventually lead to significant energy saving and carbon emissions reduction in air conditioning sector

    The progenitors of Type Ia supernovae with long delay times

    Full text link
    The nature of the progenitors of Type Ia supernovae (SNe Ia) is still unclear. In this paper, by considering the effect of the instability of accretion disk on the evolution of white dwarf (WD) binaries, we performed binary evolution calculations for about 2400 close WD binaries, in which a carbon--oxygen WD accretes material from a main-sequence star or a slightly evolved subgiant star (WD + MS channel), or a red-giant star (WD + RG channel) to increase its mass to the Chandrasekhar (Ch) mass limit. According to these calculations, we mapped out the initial parameters for SNe Ia in the orbital period--secondary mass (log⁑Piβˆ’M2i\log P^{\rm i}-M^{\rm i}_2) plane for various WD masses for these two channels, respectively. We confirm that WDs in the WD + MS channel with a mass as low as 0.61MβŠ™0.61 M_\odot can accrete efficiently and reach the Ch limit, while the lowest WD mass for the WD + RG channel is 1.0MβŠ™1.0 \rm M_\odot. We have implemented these results in a binary population synthesis study to obtain the SN Ia birthrates and the evolution of SN Ia birthrates with time for both a constant star formation rate and a single starburst. We find that the Galactic SN Ia birthrate from the WD + MS channel is ∼\sim1.8Γ—10βˆ’3yrβˆ’11.8\times 10^{-3} {\rm yr}^{-1} according to our standard model, which is higher than previous results. However, similar to previous studies, the birthrate from the WD + RG channel is still low (∼\sim3Γ—10βˆ’5yrβˆ’13\times 10^{-5} {\rm yr}^{-1}). We also find that about one third of SNe Ia from the WD + MS channel and all SNe Ia from the WD + RG channel can contribute to the old populations (\ga1 Gyr) of SN Ia progenitors.Comment: 11 pages, 9 figures, 1 table, accepted for publication in MNRA
    • …
    corecore