4,068 research outputs found

    Analysis and synthesis of randomly switched systems with known sojourn probabilities

    Get PDF
    In this paper, a new approach is proposed and investigated for the stability analysis and stabilizing controller design of randomly switched linear discrete systems. The approach is based on sojourn probabilities and it is assumed that these probabilities are known a prior. A new Lyapunov functional is constructed and two main theorems are proved in this paper. Theorem 1 gives a sufficient condition for a switched system with known sojourn probabilities to be mean square stable. Theorem 2 gives a sufficient condition for the design of a stabilizing controller. The applications of these theorems and the corresponding corollary and lemma are demonstrated by three numerical examples. Finally, some future research is proposed

    RNA interference-mediated silencing of BACE and APP attenuates the isoflurane-induced caspase activation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>β-Amyloid protein (Aβ) has been shown to potentiate the caspase-3 activation induced by the commonly used inhalation anesthetic isoflurane. However, it is unknown whether reduction in Aβ levels can attenuate the isoflurane-induced caspase-3 activation. We therefore set out to determine the effects of RNA interference-mediated silencing of amyloid precursor protein (APP) and β-site APP-cleaving enzyme (BACE) on the levels of Aβ and the isoflurane-induced caspase-3 activation.</p> <p>Methods</p> <p>H4 human neuroglioma cells stably transfected to express full-length human APP (H4-APP cells) were treated with small interference RNAs (siRNAs) targeted at silencing BACE and APP for 48 hours. The cells were then treated with 2% isoflurane for six hours. The levels of BACE, APP, and caspase-3 were determined using Western blot analysis. Sandwich Enzyme-linked immunosorbent assay (ELISA) was used to determine the extracellular Aβ levels in the conditioned cell culture media.</p> <p>Results</p> <p>Here we show for the first time that treatment with BACE and APP siRNAs can decrease levels of BACE, full-length APP, and APP c-terminal fragments. Moreover, the treatment attenuates the Aβ levels and the isoflurane-induced caspase-3 activation. These results further suggest a potential role of Aβ in the isoflurane-induced caspase-3 activation such that the reduction in Aβ levels attenuates the isoflurane-induced caspase-3 activation.</p> <p>Conclusion</p> <p>These findings will lead to more studies which aim at illustrating the underlying mechanism by which isoflurane and other anesthetics may affect Alzheimer's disease neuropathogenesis.</p

    Regulation of Polysaccharide in Wu-Tou Decoction on Intestinal Microflora and Pharmacokinetics of Small Molecular Compounds in AIA Rats

    Get PDF
    Wu-tou decoction (WTD), a traditional Chinese medicine prescription, is used to treat rheumatoid arthritis (RA). It works by controlling intestinal flora and its metabolites, which in turn modulates the inflammatory response and intestinal barrier function. Small molecular compounds (SM) and polysaccharides (PS) were the primary constituents of WTD extract. In this work, a model of adjuvant-induced arthritis (AIA) in rats was established and treated with WTD, SM, and PS, respectively. 16S rRNA gene sequencing was used to examine the regulatory impact of the various groups on the disturbance of the gut flora induced by RA. Further, since PS cannot be absorbed into the blood, the influence of PS on the absorption and metabolism of SM was studied by examining their pharmacokinetic (PK) parameters of 23 active components in SM by UPLC-MS/MS. WTD was found to be more effective than PS and SM in alleviating arthritis in AIA rats, which may be related to changes in gut flora. The PK properties of 13 active compounds were altered after PS intervene. Based on the findings, PS may be able to manage the disruption of intestinal microbiota, enhance the intestinal environment of model animals, and hence influence SM absorption and metabolism

    A one-dimensional cadmium(II) complex supported by a sulfur–nitro­gen mixed-donor ligand

    Get PDF
    In the title compound, catena-poly[cadmium(II)-bis­(μ-5-am­ino-1,3,4-thia­diazole-2-thiol­ato)-κ2 N 3:S 2;κ2 S 2:N 3], [Cd(C2H2N3S2)2]n, the CdII ion is coordinated by two N atoms of the 1,3,4-thia­diazole rings from two ligands and two S atoms of sulfhydryl from two other ligands in a slightly distorted tetra­hedral geometry. The ligands bridge CdII ions, forming one-dimensional chains along [001], which are connected by N—H⋯N and N—H⋯S hydrogen bonds into a three-dimensional network

    Resilient optimal defensive strategy of TSK fuzzy-model-based microgrids' system via a novel reinforcement learning approach

    Get PDF
    With consideration of false data injection (FDI) on the demand side, it brings a great challenge for the optimal defensive strategy with the security issue, voltage stability, power flow, and economic cost indexes. This article proposes a Takagi-Sugeuo-Kang (TSK) fuzzy system-based reinforcement learning approach for the resilient optimal defensive strategy of interconnected microgrids. Due to FDI uncertainty of the system load, TSK-based deep deterministic policy gradient (DDPG) is proposed to learn the actor network and the critic network, where multiple indexes' assessment occurs in the critic network, and the security switching control strategy is made in the actor network. Alternating direction method of multipliers (ADMM) method is improved for policy gradient with online coordination between the actor network and the critic network learning, and its convergence and optimality are proved properly. On the basis of security switching control strategy, the penalty-based boundary intersection (PBI)-based multiobjective optimization method is utilized to solve economic cost and emission issues simultaneously with considering voltage stability and rate-of-change of frequency (RoCoF) limits. According to simulation results, it reveals that the proposed resilient optimal defensive strategy can be a viable and promising alternative for tackling uncertain attack problems on interconnected microgrids.In part by the National Natural Science Fund, the Basic Research Project of Leading Technology of Jiangsu Province, the National Key Research and Development Program of China and the National Natural Science Key Fund.https://ieeexplore.ieee.org/servlet/opac?punumber=5962385hj2023Electrical, Electronic and Computer Engineerin
    corecore