42,061 research outputs found

    Spin liquid close to a quantum critical point in Na4_4Ir3_3O8_8

    Full text link
    Na4_4Ir3_3O8_8 is a candidate material for a 3-dimensional quantum spin-liquid on the hyperkagome lattice. We present thermodynamic measurements of heat capacity CC and thermal conductivity κ\kappa on high quality polycrystalline samples of Na4_4Ir3_3O8_8 down to T=500T = 500 mK and 7575 mK, respectively. Absence of long-range magnetic order down to T=75T = 75 mK strongly supports claims of a spin-liquid ground state. The constant magnetic susceptibility χ\chi below T25T \approx 25 K and the presence of a small but finite linear-TT term in C(T)C(T) suggest the presence of gapless spin excitations. Additionally, the magnetic Gru¨\ddot{\rm{u}}neisen ratio shows a divergence as T0T \rightarrow 0 K and a scaling behavior which clearly demonstrates that Na4_4Ir3_3O8_8 is situated close to a zero-field QCP.Comment: 5 pages, 4 figures, PRB rapid, in pres

    Optical study of phase transitions in single-crystalline RuP

    Full text link
    RuP single crystals of MnP-type orthorhombic structure were synthesized by the Sn flux method. Temperature-dependent x-ray diffraction measurements reveal that the compound experiences two structural phase transitions, which are further confirmed by enormous anomalies shown in temperature-dependent resistivity and magnetic susceptibility. Particularly, the resistivity drops monotonically upon temperature cooling below the second transition, indicating that the material shows metallic behavior, in sharp contrast with the insulating ground state of polycrystalline samples. Optical conductivity measurements were also performed in order to unravel the mechanism of these two transitions. The measurement revealed a sudden reconstruction of band structure over a broad energy scale and a significant removal of conducting carriers below the first phase transition, while a charge-density-wave-like energy gap opens below the second phase transition.Comment: 5 pages, 6 figure

    Looping on the Bloch sphere: Oscillatory effects in dephasing of qubits subject to broad-spectrum noise

    Full text link
    For many implementations of quantum computing, 1/f and other types of broad-spectrum noise are an important source of decoherence. An important step forward would be the ability to back out the characteristics of this noise from qubit measurements and to see if it leads to new physical effects. For certain types of qubits, the working point of the qubit can be varied. Using a new mathematical method that is suited to treat all working points, we present theoretical results that show how this degree of freedom can be used to extract noise parameters and to predict a new effect: noise-induced looping on the Bloch sphere. We analyze data on superconducting qubits to show that they are very near the parameter regime where this looping should be observed.Comment: 4 pages, 3 figure

    Relationship between the gamma-ray burst pulse width and energy due to the Doppler effect of fireballs

    Full text link
    We study in details how the pulse width of gamma-ray bursts is related with energy under the assumption that the sources concerned are in the stage of fireballs. Due to the Doppler effect of fireballs, there exists a power law relationship between the two quantities within a limited range of frequency. The power law range and the power law index depend strongly on the observed peak energy EpE_p as well as the rest frame radiation form, and the upper and lower limits of the power law range can be determined by EpE_p. It is found that, within the same power law range, the ratio of the FWHMFWHM of the rising portion to that of the decaying phase of the pulses is also related with energy in the form of power laws. A platform-power-law-platform feature could be observed in the two relationships. In the case of an obvious softening of the rest frame spectrum, the two power law relationships also exist, but the feature would evolve to a peaked one. Predictions on the relationships in the energy range covering both the BATSE and Swift bands for a typical hard burst and a typical soft one are made. A sample of FRED (fast rise and exponential decay) pulse bursts shows that 27 out of the 28 sources belong to either the platform-power-law-platform feature class or the peaked feature group, suggesting that the effect concerned is indeed important for most of the sources of the sample. Among these bursts, many might undergo an obvious softening evolution of the rest frame spectrum.Comment: Accepted for publication in The Astrophysical Journa

    Determination of Dark Matter Halo Mass from Dynamics of Satellite Galaxies

    Full text link
    We show that the mass of a dark matter halo can be inferred from the dynamical status of its satellite galaxies. Using 9 dark-matter simulations of halos like the Milky Way (MW), we find that the present-day substructures in each halo follow a characteristic distribution in the phase space of orbital binding energy and angular momentum, and that this distribution is similar from halo to halo but has an intrinsic dependence on the halo formation history. We construct this distribution directly from the simulations for a specific halo and extend the result to halos of similar formation history but different masses by scaling. The mass of an observed halo can then be estimated by maximizing the likelihood in comparing the measured kinematic parameters of its satellite galaxies with these distributions. We test the validity and accuracy of this method with mock samples taken from the simulations. Using the positions, radial velocities, and proper motions of 9 tracers and assuming observational uncertainties comparable to those of MW satellite galaxies, we find that the halo mass can be recovered to within \sim40%. The accuracy can be improved to within \sim25% if 30 tracers are used. However, the dependence of the phase-space distribution on the halo formation history sets a minimum uncertainty of \sim20% that cannot be reduced by using more tracers. We believe that this minimum uncertainty also applies to any mass determination for a halo when the phase space information of other kinematic tracers is used.Comment: Accepted for publication in ApJ, 18 pages, 13 figure

    Optical spectroscopy study of the collapsed tetragonal phase of CaFe2_2(As0.935_{0.935}P0.065_{0.065})2_2 single crystals

    Full text link
    We present an optical spectroscopy study on P-doped CaFe2_2As2_2 which experiences a structural phase transition from tetragonal to collapsed tetragonal (cT) phase near 75 K. The measurement reveals a sudden reduction of low frequency spectral weight and emergence of a new feature near 3200 \cm (0.4 eV) in optical conductivity across the transition, indicating an abrupt reconstruction of band structure. The appearance of new feature is related to the interband transition arising from the sinking of hole bands near Γ\Gamma point below Fermi level in the cT phase, as expected from the density function theory calculations in combination with the dynamical mean field theory. However, the reduction of Drude spectral weight is at variance with those calculations. The measurement also indicates an absence of the abnormal spectral weight transfer at high energy (near 0.5-0.7 eV) in the cT phase, suggesting a suppression of electron correlation effect.Comment: 6 pages, 4 figure
    corecore