860 research outputs found

    Does the Short Term Fluctuation of Mineral Element Concentrations in the Closed Hydroponic Experimental Facilities Affect the Mineral Concentrations in Cucumber Plants Exposed to Elevated CO\u3csub\u3e2\u3c/sub\u3e?

    Get PDF
    Aims Studies dealing with plants’ mineral nutrient status under elevated atmospheric CO2concentration (eCO2) are usually conducted in closed hydroponic systems, in which nutrient solutions are entirely renewed every several days. Here, we investigated the contribution of the fluctuation of concentrations of N ([N]), P ([P]), and K ([K]) in nutrient solutions in this short period on their concentrations in cucumber plants exposed to different [CO2] and N levels. Methods Cucumber (Cucumis sativus L.) plants were hydroponically grown under two [CO2] and three N levels. [N], [P], and [K] in nutrient solutions and cucumber plants were analyzed. Results The transpiration rate (Tr) was significantly inhibited by eCO2, whereas Tr per plant was increased due to the larger leaf area. Elevated [CO2] significantly decreased [N] in low N nutrient solutions, which imposed an additional decrease in [N] in plants. [P] in nutrient solutions fluctuated slightly, so the change of [P] in plants might be attributed to the dilution effect and the demand change under eCO2. [K] in moderate and high N nutrient solutions were significantly decreased, which exacerbated the [K] decrease in plants under eCO2. Conclusions The short-term fluctuation of [N] and [K] in nutrient solutions is caused by the asynchronous uptakes of N, K, and water under eCO2, which has an appreciable influence on [N] and [K] in plants besides the dilution effect. This defect of the closed hydroponic system may let us exaggerate the negative impact of eCO2 itself on [N] and [K] in plants

    Monitoring of Tsunami/Earthquake Damages by Polarimetric Microwave Remote Sensing Technique

    Get PDF
    Polarization characterizes the vector state of EM wave. When interacting with polarized wave, rough natural surface often induces dominant surface scattering; building also presents dominant double-bounce scattering. Tsunami/earthquake causes serious destruction just by inundating the land surface and destroying the building. By analyzing the change of surface and double-bounce scattering before and after disaster, we can achieve a monitoring of damages. This constitutes one basic principle of polarimetric microwave remote sensing of tsunami/earthquake. The extraction of surface and double-bounce scattering from coherency matrix is achieved by model-based decomposition. The general four-component scattering power decomposition with unitary transformation (G4U) has been widely used in the remote sensing of tsunami/earthquake to identify surface and double-bounce scattering because it can adaptively enhance surface or double-bounce scattering. Nonetheless, the strict derivation in this chapter conveys that G4U cannot always strengthen the double-bounce scattering in urban area nor strengthen the surface scattering in water or land area unless we adaptively combine G4U and its duality for an extended G4U (EG4U). Experiment on the ALOS-PALSAR datasets of 2011 great Tohoku tsunami/earthquake demonstrates not only the outperformance of EG4U but also the effectiveness of polarimetric remote sensing in the qualitative monitoring and quantitative evaluation of tsunami/earthquake damages

    Effects of Root-Zone Temperature and N, P, and K Supplies on Nutrient Uptake of Cucumber (Cucumis sativus L.) Seedlings in Hydroponics

    Get PDF
    The nutrient uptake and allocation of cucumber (Cucumis sativus L.) seedlings at different root-zone temperatures (RZT) and different concentrations of nitrogen (N), phosphorus (P), and potassium (K) nutrients were examined. Plants were grown in a nutrient solution for 30 d at two root-zone temperatures (a diurnally fluctuating ambient 10°C-RZT and a constant 20° C-RZT) with the aerial parts of the plants maintained at ambient temperature (10°C -30°C). Based on a Hoagland nutrient solution, seven N, P, and K nutrient concentrations were supplied to the plants at each RZT. Results showed that total plant and shoot dry weights under each nutrient treatment were significantly lower at low root-zone temperature (10°C-RZT) than at elevated root-zone temperature (20°C-RZT). But higher root dry weights were obtained at 10°C-RZT than those at 20°C-RZT. Total plant dry weights at both 10°C-RZT and 20°C-RZT were increased with increased solution N concentration, but showed different responses under P and K treatments. All estimated nutrient concentrations (N, P, and K) and uptake by the plant were obviously influenced by RZT. Low root temperature (10°C-RZT) caused a remarkable reduction in total N, P, and K uptake of shoots in all nutrient treatments, and more nutrients were accumulated in roots at 10 degrees C-RZT than those at 20°C-RZT. N, P, and K uptakes and distribution ratios in shoots were both improved at elevated root-zone temperature (20° C-RZT). N supplies were favorable to P and K uptake at both 10°C-RZT and 20°C-RZT, with no significantly positive correlation between N and P, or N and K uptake. In conclusion, higher RZT was more beneficial to increase of plant biomass and mineral nutrient absorption than was increase of nutrient concentration. Among the three element nutrients, increasing N nutrient concentration in solution promoted better tolerance to low RZT in cucumber seedlings than increasing P and K. In addition, appropriately decreased P concentration favors plant growth

    Second-order Raman spectroscopy of char during gasification

    Get PDF
    Raman spectroscopy has been widely used in the structural characterization of various carbonaceous materials. Through spectral deconvolution, FT-Raman spectroscopy has been used to gain insights into the transformation of char structure during gasification, providing new evidence to understand the char gasification mechanisms. These studies have mainly focused on the first-order Raman spectra in the range between 800 and 1800 cm− 1. Additional information can be gained from the second-order Raman spectra. This study aims to develop a new spectral deconvolution scheme for the second-order Raman spectra of chars from the gasification of coal and biomass. As our initial attempt, the second-order Raman spectra of chars in the range between 2000 and 3300 cm− 1 were deconvoluted into 7 bands representing the main structural features in the chars. Both total Raman peak area and band area ratios are used to gain information about the structural features of char. Using chars from the gasification of WA Collie sub-bituminous coal in CO2 and H2O as examples, the implication of the first-order and second-order Raman spectral data in terms of gasification mechanisms is discussed

    Chiral-Flux-Phase-Based Topological Superconductivity in Kagome Systems with Mixed Edge Chiralities

    Full text link
    Recent studies have attracted intense attention on the quasi-2D kagome superconductors AV3Sb5 A\text{V}_3\text{Sb}_5 (A= A = K, Rb, and Cs) where the unexpected chiral flux phase (CFP) associates with the spontaneous time-reversal symmetry breaking in charge density wave (CDW) states. Here, commencing from the 2-by-2 CDW phases, we bridge the gap between topological superconductivity (TSC) and time-reversal asymmetric CFP in kagome systems. Several chiral TSC states featuring distinct Chern numbers emerge for an s-wave or a d-wave superconducting pairing symmetry. Importantly, these CFP-based TSC phases possess unique gapless edge modes with mixed chiralities (i.e., both positive and negative chiralities), but with the net chiralities consistent with the Bogoliubov-de Gennes Chern numbers. We further study the transport properties of a two-terminal junction, using Chern insulator or normal metal leads via atomic Green's function method with Landauer-B\"uttiker formalism. In both cases, the normal electron tunneling and the crossed Andreev reflection oscillate as the chemical potential changes, but together contribute to plateau transmissions (1 and 3/2, respectively). These behaviors can be regarded as the signature of a topological superconductor hosting edge states with mixed chiralities.Comment: 6 pages, 4 figure

    Interactive Effects of the CO\u3csub\u3e2\u3c/sub\u3e Enrichment and Nitrogen Supply on the Biomass Accumulation, Gas Exchange Properties, and Mineral Elements Concentrations in Cucumber Plants at Different Growth Stages

    Get PDF
    The concentration changes of mineral elements in plants at different CO2 concentrations ([CO2]) and nitrogen (N) supplies and the mechanisms which control such changes are not clear. Hydroponic trials on cucumber plants with three [CO2] (400, 625, and 1200 µmol mol−1) and five N supply levels (2, 4, 7, 14, and 21 mmol L−1) were conducted. When plants were in high N supply, the increase in total biomass by elevated [CO2] was 51.7% and 70.1% at the seedling and initial fruiting stages, respectively. An increase in net photosynthetic rate (Pn) by more than 60%, a decrease in stomatal conductance (Gs) by 21.2–27.7%, and a decrease in transpiration rate (Tr) by 22.9–31.9% under elevated [CO2] were also observed. High N supplies could further improve the Pn and offset the decrease of Gs and Tr by elevated [CO2]. According to the mineral concentrations and the correlation results, we concluded the main factors affecting these changes. The dilution effect was the main factor driving the reduction of all mineral elements, whereas Tr also had a great impact on the decrease of [N], [K], [Ca], and [Mg] except [P]. In addition, the demand changes of N, Ca, and Mg influenced the corresponding element concentrations in cucumber plants

    microRNA-105-5p protects against chondrocyte injury, extracellular matrix degradation, and osteoarthritis progression by targeting SPARCL1

    Get PDF
    Objective. Both microRNA (miR)-105-5p and SPARCL1 were discovered to be differentially expressed in osteoarthritis (OA), but their roles and exact mechanisms have not been entirely elaborated. This paper sets out to probe the impact of miR-105-5p/SPARCL1 on chondrocyte injury, extracellular matrix degradation, and osteoarthritis progression. Methods. C28/I2 cells were stimulated with IL-1β to construct an in vitro OA model. C28/I2 cells were transfected with sh-SPARCL1, oe-SPARCL1, or miR-105-5p mimic before IL-1β induction. CCK-8 assay, flow cytometry, and ELISA were adopted to assess cell viability, apoptosis, and inflammatory factor expression, respectively. The binding relationship of miR-105-5p to SPARCL1 was assessed using dual-luciferase reporter assay. After an OA rat model was established, rats underwent intra-articular injection with ago-miR-105-5p. TUNEL was applied to determine cell apoptosis in vivo. mRNA and protein levels were measured by qRT-PCR and western blot, respectively, in vitro and in vivo. Results. IL-1β treatment diminished miR-105-5p expression and augmented SPARCL1 expression in C28/I2 cells. miR-105-5p decreased SPARCL1 expression by targeting SPARCL1. miR-105-5p overexpression or SPARCL1 silencing prominently reversed the decrease in viability and the promotion of inflammatory factor production, cartilage matrix degradation, and apoptosis in IL-1β-stimulated C28/I2 cells. Furthermore, upregulation of SPARCL1 nullified the influence of miR-105-5p overexpression on viability, apoptosis, inflammation, and cartilage matrix degradation in IL-1β-stimulated C28/I2 cells. miR-105-5p overexpression ameliorated knee cartilage tissue injury in OA rats. Conclusion. Conclusively, miR-105-5p exerted suppressive effects on chondrocyte injury, extracellular matrix degradation, and OA progression by targeting SPARCL1

    IEEE 802.11be Wi-Fi 7: Feature Summary and Performance Evaluation

    Full text link
    While the pace of commercial scale application of Wi-Fi 6 accelerates, the IEEE 802.11 Working Group is about to complete the development of a new amendment standard IEEE 802.11be -- Extremely High Throughput (EHT), also known as Wi-Fi 7, which can be used to meet the demand for the throughput of 4K/8K videos up to tens of Gbps and low-latency video applications such as virtual reality (VR) and augmented reality (AR). Wi-Fi 7 not only scales Wi-Fi 6 with doubled bandwidth, but also supports real-time applications, which brings revolutionary changes to Wi-Fi. In this article, we start by introducing the main objectives and timeline of Wi-Fi 7 and then list the latest key techniques which promote the performance improvement of Wi-Fi 7. Finally, we validate the most critical objectives of Wi-Fi 7 -- the potential up to 30 Gbps throughput and lower latency. System-level simulation results suggest that by combining the new techniques, Wi-Fi 7 achieves 30 Gbps throughput and lower latency than Wi-Fi 6.Comment: 6 pages, 4 figure
    • …
    corecore