25,919 research outputs found

    Elimination of negative differential conductance in an asymmetric molecular transistor by an ac-voltage

    Full text link
    We analyze resonant tunneling subject to a non-adiabatic time-dependent bias-voltage through an asymmetric single molecular quantum dot with coupling between the electronic and vibrational degrees of freedom using a {\em Tien-Gordon-type} rate equation. Our results clearly exhibit the appearance of photon-assisted satellites in the current-voltage characteristics and the elimination of hot-phonon-induced negative differential conductance with increasing ac driving amplitude for an asymmetric system. This can be ascribed to an {\em ac-induced suppression} of unequilibrated (hot) phonons in an asymmetric system.Comment: Accepted by Appl. Phys. Let

    Finite-frequency current (shot) noise in coherent resonant tunneling through a coupled-quantum-dot interferometer

    Full text link
    We examine the shot noise spectrum properties of coherent resonant tunneling in coupled quantum dots in both series and parallel arrangements by means of quantum rate equations and MacDonald's formula. Our results show that, for a series-CQD with a relatively high dot-dot hopping Ω\Omega, Ω/Γ1\Omega/\Gamma\gtrsim 1 (Γ\Gamma denotes the dot-lead tunnel-coupling strength), the noise spectrum exhibits a dip at the Rabi frequency, 2Ω2\Omega, in the case of noninteracting electrons, but the dip is supplanted by a peak in the case of strong Coulomb repulsion; furthermore, it becomes a dip again for a completely symmetric parallel-CQD by tuning enclosed magnetic-flux.Comment: 8 pages, 5 figure

    Positive current noise cross-correlations in capacitively coupled double quantum dots with ferromagnetic leads

    Full text link
    We examine cross-correlations (CCs) in the tunneling currents through two parallel interacting quantum dots coupled to four independent ferromagnetic electrodes. We find that when either one of the two circuits is in the parallel configuration with sufficiently strong polarization strength, a new mechanism of dynamical spin blockade, i.e., a spin-dependent bunching of tunneling events, governs transport through the system together with the inter-dot Coulomb interaction, leading to a sign-reversal of the zero-frequency current CC in the dynamical channel blockade regime, and to enhancement of positive current CC in the dynamical channel anti-blockade regimes, in contrast to the corresponding results for the case of paramagnetic leads.Comment: 9 pages, 3 figure

    Tunable near- to mid-infrared pump terahertz probe spectroscopy in reflection geometry

    Full text link
    Strong-field mid-infrared pump--terahertz (THz) probe spectroscopy has been proven as a powerful tool for light control of different orders in strongly correlated materials. We report the construction of an ultrafast broadband infrared pump--THz probe system in reflection geometry. A two-output optical parametric amplifier is used for generating mid-infrared pulses with GaSe as the nonlinear crystal. The setup is capable of pumping bulk materials at wavelengths ranging from 1.2 μ\mum to 15 μ\mum and beyond, and detecting the subtle, transient photoinduced changes in the reflected electric field of the THz probe at different temperatures. As a demonstration, we present 15 μ\mum pump--THz probe measurements of a bulk EuSbTe3_{3} single crystal. A 0.5%0.5\% transient change in the reflected THz electric field can be clearly resolved. The widely tuned pumping energy could be used in mode-selective excitation experiments and applied to many strongly correlated electron systems.Comment: 4 pages, 4 figure

    Generation of high-energy monoenergetic heavy ion beams by radiation pressure acceleration of ultra-intense laser pulses

    Full text link
    A novel radiation pressure acceleration (RPA) regime of heavy ion beams from laser-irradiated ultrathin foils is proposed by self-consistently taking into account the ionization dynamics. In this regime, the laser intensity is required to match with the large ionization energy gap when the successive ionization of high-Z atoms passing the noble gas configurations [such as removing an electron from the helium-like charge state (Z2)+(\text{Z}-2)^+ to (Z1)+(\text{Z}-1)^+]. While the target ions in the laser wing region are ionized to low charge states and undergo rapid dispersions due to instabilities, a self-organized, stable RPA of highly-charged heavy ion beam near the laser axis is achieved. It is also found that a large supplement of electrons produced from ionization helps preserving stable acceleration. Two-dimensional particle-in-cell simulations show that a monoenergetic Al13+\text{Al}^{13+} beam with peak energy 1 GeV1\ \text{GeV} and energy spread of 5%5\% is obtained by lasers at intensity 7×1020 W/cm27\times10^{20}\ \text{W}/\text{cm}^2.Comment: 5 pages, 4 figure

    Infrared spectroscopy of the charge ordering transition in Na0.5_{0.5}CoO2_2

    Full text link
    We report infrared spectra of a Na0.5_{0.5}CoO2_2 single crystal which exhibits a sharp metal-insulator transition near 50 K due to the formation of charge ordering. In comparison with x=0.7 and 0.85 compounds, we found that the spectral weight associated with the conducting carriers at high temperature increases systematically with decreasing Na contents. The charge ordering transition only affects the optical spectra below 1000 cm1^{-1}. A hump near 800 cm1^{-1} develops below 100 K, which is accompanied by the appearance of new lattice modes as well as the strong anti-resonance feature of phonon spectra. At lower temperature TcoT_{co}, an optical gap develops at the magnitude of 2Δ3.5kBTco\Delta\approx3.5k_BT_{co}, evidencing an insulating charge density wave ground state. Our experimental results and analysis unequivocally point towards the importance of charge ordering instability and strong electron-phonon interaction in Nax_xCoO2_2 system.Comment: 4 pages, 3 figure

    Creep motion of a domain wall in the two-dimensional random-field Ising model with a driving field

    Full text link
    With Monte Carlo simulations, we study the creep motion of a domain wall in the two-dimensional random-field Ising model with a driving field. We observe the nonlinear fieldvelocity relation, and determine the creep exponent {\mu}. To further investigate the universality class of the creep motion, we also measure the roughness exponent {\zeta} and energy barrier exponent {\psi} from the zero-field relaxation process. We find that all the exponents depend on the strength of disorder.Comment: 5 pages, 4 figure

    Optical spectroscopy study of the collapsed tetragonal phase of CaFe2_2(As0.935_{0.935}P0.065_{0.065})2_2 single crystals

    Full text link
    We present an optical spectroscopy study on P-doped CaFe2_2As2_2 which experiences a structural phase transition from tetragonal to collapsed tetragonal (cT) phase near 75 K. The measurement reveals a sudden reduction of low frequency spectral weight and emergence of a new feature near 3200 \cm (0.4 eV) in optical conductivity across the transition, indicating an abrupt reconstruction of band structure. The appearance of new feature is related to the interband transition arising from the sinking of hole bands near Γ\Gamma point below Fermi level in the cT phase, as expected from the density function theory calculations in combination with the dynamical mean field theory. However, the reduction of Drude spectral weight is at variance with those calculations. The measurement also indicates an absence of the abnormal spectral weight transfer at high energy (near 0.5-0.7 eV) in the cT phase, suggesting a suppression of electron correlation effect.Comment: 6 pages, 4 figure

    Hamiltonian equation of motion and depinning phase transition in two-dimensional magnets

    Full text link
    Based on the Hamiltonian equation of motion of the ϕ4\phi^4 theory with quenched disorder, we investigate the depinning phase transition of the domain-wall motion in two-dimensional magnets. With the short-time dynamic approach, we numerically determine the transition field, and the static and dynamic critical exponents. The results show that the fundamental Hamiltonian equation of motion belongs to a universality class very different from those effective equations of motion.Comment: 6 pages, 7 figures, have been accept by EP

    Nodeless superconductivity in Ca3Ir4Sn13: evidence from quasiparticle heat transport

    Full text link
    We report resistivity ρ\rho and thermal conductivity κ\kappa measurements on Ca3_3Ir4_4Sn13_{13} single crystals, in which superconductivity with Tc7T_c \approx 7 K was claimed to coexist with ferromagnetic spin-fluctuations. Among three crystals, only one crystal shows a small hump in resistivity near 20 K, which was previously attributed to the ferromagnetic spin-fluctuations. Other two crystals show the ρT2\rho \sim T^2 Fermi-liquid behavior at low temperature. For both single crystals with and without the resistivity anomaly, the residual linear term κ0/T\kappa_0/T is negligible in zero magnetic field. In low fields, κ0(H)/T\kappa_0(H)/T shows a slow field dependence. These results demonstrate that the superconducting gap of Ca3_3Ir4_4Sn13_{13} is nodeless, thus rule out nodal gap caused by ferromagnetic spin-fluctuations.Comment: 5 pages, 4 figure
    corecore