44,240 research outputs found

    On Representations of Conformal Field Theories and the Construction of Orbifolds

    Full text link
    We consider representations of meromorphic bosonic chiral conformal field theories, and demonstrate that such a representation is completely specified by a state within the theory. The necessary and sufficient conditions upon this state are derived, and, because of their form, we show that we may extend the representation to a representation of a suitable larger conformal field theory. In particular, we apply this procedure to the lattice (FKS) conformal field theories, and deduce that Dong's proof of the uniqueness of the twisted representation for the reflection-twisted projection of the Leech lattice conformal field theory generalises to an arbitrary even (self-dual) lattice. As a consequence, we see that the reflection-twisted lattice theories of Dolan et al are truly self-dual, extending the analogies with the theories of lattices and codes which were being pursued. Some comments are also made on the general concept of the definition of an orbifold of a conformal field theory in relation to this point of view.Comment: 11 pages, LaTeX. Updated references and added preprint n

    Multipole polarizability of a graded spherical particle

    Full text link
    We have studied the multipole polarizability of a graded spherical particle in a nonuniform electric field, in which the conductivity can vary radially inside the particle. The main objective of this work is to access the effects of multipole interactions at small interparticle separations, which can be important in non-dilute suspensions of functionally graded materials. The nonuniform electric field arises either from that applied on the particle or from the local field of all other particles. We developed a differential effective multipole moment approximation (DEMMA) to compute the multipole moment of a graded spherical particle in a nonuniform external field. Moreover, we compare the DEMMA results with the exact results of the power-law graded profile and the agreement is excellent. The extension to anisotropic DEMMA will be studied in an Appendix.Comment: LaTeX format, 2 eps figures, submitted for publication

    Anisotropic Magneto-conductance of InAs Nanowire: Angle Dependent Suppression of 1D Weak Localization

    Full text link
    The magneto-conductance of an InAs nanowire is investigated with respect to the relative orientation between external magnetic field and the nanowire axis. It is found that both the perpendicular and the parallel magnetic fields induce a positive magneto-conductance. Yet the parallel magnetic field induced longitudinal magneto-conductance has a smaller magnitude. This anisotropic magneto-transport phenomenon is studied as a function of temperature, magnetic field strength and at an arbitrary angle between the magnetic field and the nanowire. We show that the observed effect is in quantitative agreement with the suppression of one-dimensional (1D) weak localization

    The 3-3-1 model with A_4 flavor symmetry

    Full text link
    We argue that the A_4 symmetry as required by three flavors of fermions may well-embed in the SU(3)_C X SU(3)_L X U(1)_X gauge model. The new neutral fermion singlets as introduced in a canonical seesaw mechanism can be combined with the standard model lepton doublets to perform SU(3)_L triplets. Various leptoscalar multiplets such as singlets, doublets, and triplets as played in the models of A_4 are unified in single SU(3)_L antisextets. As a result, naturally light neutrinos with various kinds of mass hierarchies are obtained as a combination of type I and type II seesaw contributions. The observed neutrino mixing pattern in terms of the Harrison-Perkins-Scott proposal is obtained by enforcing of the A_4 group. The quark masses and Cabibbo-Kobayashi-Maskawa mixing matrix are also discussed. By virtue of very heavy antisextets the nature of the vacuum alignments of scalar fields can be given.Comment: Version published by PR

    Optical study of phase transitions in single-crystalline RuP

    Full text link
    RuP single crystals of MnP-type orthorhombic structure were synthesized by the Sn flux method. Temperature-dependent x-ray diffraction measurements reveal that the compound experiences two structural phase transitions, which are further confirmed by enormous anomalies shown in temperature-dependent resistivity and magnetic susceptibility. Particularly, the resistivity drops monotonically upon temperature cooling below the second transition, indicating that the material shows metallic behavior, in sharp contrast with the insulating ground state of polycrystalline samples. Optical conductivity measurements were also performed in order to unravel the mechanism of these two transitions. The measurement revealed a sudden reconstruction of band structure over a broad energy scale and a significant removal of conducting carriers below the first phase transition, while a charge-density-wave-like energy gap opens below the second phase transition.Comment: 5 pages, 6 figure

    Algebraic approach to the Hulthen potential

    Full text link
    In this paper the energy eigenvalues and the corresponding eigenfunctions are calculated for Hulthen potential. Then we obtain the ladder operators and show that these operators satisfy SU(2) commutation relation.Comment: 8 Pages, 1 Tabl

    Relationship between the gamma-ray burst pulse width and energy due to the Doppler effect of fireballs

    Full text link
    We study in details how the pulse width of gamma-ray bursts is related with energy under the assumption that the sources concerned are in the stage of fireballs. Due to the Doppler effect of fireballs, there exists a power law relationship between the two quantities within a limited range of frequency. The power law range and the power law index depend strongly on the observed peak energy EpE_p as well as the rest frame radiation form, and the upper and lower limits of the power law range can be determined by EpE_p. It is found that, within the same power law range, the ratio of the FWHMFWHM of the rising portion to that of the decaying phase of the pulses is also related with energy in the form of power laws. A platform-power-law-platform feature could be observed in the two relationships. In the case of an obvious softening of the rest frame spectrum, the two power law relationships also exist, but the feature would evolve to a peaked one. Predictions on the relationships in the energy range covering both the BATSE and Swift bands for a typical hard burst and a typical soft one are made. A sample of FRED (fast rise and exponential decay) pulse bursts shows that 27 out of the 28 sources belong to either the platform-power-law-platform feature class or the peaked feature group, suggesting that the effect concerned is indeed important for most of the sources of the sample. Among these bursts, many might undergo an obvious softening evolution of the rest frame spectrum.Comment: Accepted for publication in The Astrophysical Journa
    corecore