6,484 research outputs found

    Extensive Structural Variations Between Mitochondrial Genomes of CMS and Normal Peppers (Capsicum Annuum L.) Revealed by Complete Nucleotide Sequencing

    Get PDF
    Cytoplasmic male sterility (CMS) is an inability to produce functional pollen that is caused by mutation of the mitochondrial genome. Comparative analyses of mitochondrial genomes of lines with and without CMS in several species have revealed structural differences between genomes, including extensive rearrangements caused by recombination. However, the mitochondrial genome structure and the DNA rearrangements that may be related to CMS have not been characterized in Capsicum spp. Results: We obtained the complete mitochondrial genome sequences of the pepper CMS line FS4401 (507,452 bp) and the fertile line Jeju (511,530 bp). Comparative analysis between mitochondrial genomes of peppers and tobacco that are included in Solanaceae revealed extensive DNA rearrangements and poor conservation in non-coding DNA. In comparison between pepper lines, FS4401 and Jeju mitochondrial DNAs contained the same complement of protein coding genes except for one additional copy of an atp6 gene (psi atp6-2) in FS4401. In terms of genome structure, we found eighteen syntenic blocks in the two mitochondrial genomes, which have been rearranged in each genome. By contrast, sequences between syntenic blocks, which were specific to each line, accounted for 30,380 and 17,847 bp in FS4401 and Jeju, respectively. The previously-reported CMS candidate genes, orf507 and psi atp6-2, were located on the edges of the largest sequence segments that were specific to FS4401. In this region, large number of small sequence segments which were absent or found on different locations in Jeju mitochondrial genome were combined together. The incorporation of repeats and overlapping of connected sequence segments by a few nucleotides implied that extensive rearrangements by homologous recombination might be involved in evolution of this region. Further analysis using mtDNA pairs from other plant species revealed common features of DNA regions around CMS-associated genes. Conclusions: Although large portion of sequence context was shared by mitochondrial genomes of CMS and male-fertile pepper lines, extensive genome rearrangements were detected. CMS candidate genes located on the edges of highly-rearranged CMS-specific DNA regions and near to repeat sequences. These characteristics were detected among CMS-associated genes in other species, implying a common mechanism might be involved in the evolution of CMS-associated genes.Golden Seed ProjectMinistry of Agriculture, Food and Rural Affairs (MAFRA)Ministry of Oceans and Fisheries (MOF)Rural Development Administration (RDA)Korea Forest Service (KFS)Vegetable Breeding Research Center through the R&D Convergence Center Support Program, Ministry of Agriculture, Food and Rural Affairs (MAFRA) Republic of Korea 710001-07Molecular Bioscience

    Flavour Chemistry of Chicken Meat: A Review

    Get PDF
    Flavour comprises mainly of taste and aroma and is involved in consumers’ meat-buying behavior and preferences. Chicken meat flavour is supposed to be affected by a number of ante- and post-mortem factors, including breed, diet, post-mortem ageing, method of cooking, etc. Additionally, chicken meat is more susceptible to quality deterioration mainly due to lipid oxidation with resulting off-flavours. Therefore, the intent of this paper is to highlight the mechanisms and chemical compounds responsible for chicken meat flavour and off-flavour development to help producers in producing the most flavourful and consistent product possible. Chicken meat flavour is thermally derived and the Maillard reaction, thermal degradation of lipids, and interaction between these 2 reactions are mainly responsible for the generation of flavour and aroma compounds. The reaction of cysteine and sugar can lead to characteristic meat flavour specially for chicken and pork. Volatile compounds including 2-methyl-3-furanthiol, 2-furfurylthiol, methionol, 2,4,5-trimethyl-thiazole, nonanol, 2-trans-nonenal, and other compounds have been identified as important for the flavour of chicken. However 2-methyl-3-furanthiol is considered as the most vital chemical compound for chicken flavour development. In addition, a large number of heterocyclic compounds are formed when higher temperature and low moisture conditions are used during certain cooking methods of chicken meat such as roasting, grilling, frying or pressure cooking compared to boiled chicken meat. Major volatile compounds responsible for fried chicken are 3,5-dimethyl-1,2,4-trithiolanes, 2,4,6-trimethylperhydro-1,3,5-dithiazines, 3,5-diisobutyl-1,2,4-trithiolane, 3-methyl-5-butyl-1,2,4-trithiolane, 3-methyl-5-pentyl-1,2,4-trithiolane, 2,4-decadienal and trans-4,5-epoxy-trans-2-decenal. Alkylpyrazines were reported in the flavours of fried chicken and roasted chicken but not in chicken broth. The main reason for flavour deterioration and formation of undesirable “warmed over flavour” in chicken meat products are supposed to be the lack of α-tocopherol in chicken meat

    Volatile Production of Irradiated Normal, PSE, and DFD Pork

    Get PDF
    With both aerobic and vacuum packaging, irradiation increased the production of sulfur-containing volatiles in all three pork types (normal, PSE, DFD) at day 0, but did not increase hexanal - the major indicator volatile of lipid oxidation. PSE pork produced the lowest amount of total sulfur-containing volatiles in both aerobically and vacuum-packaged pork at day 0. Majority of sulfurcontaining volatiles produced in meat by irradiation evaporated during the 10-day storage period under aerobic packaging conditions. With vacuum packaging, however, the all the volatiles produced by irradiation remained in the packaging bag during storage. Irradiation had no relationship with lipid oxidation-related volatiles (e.g., hexanal) in both aerobic and vacuum-packaged raw pork. DFD muscle was very stable and resistant to oxidative changes in both irradiated and nonirradiated pork during storage, suggesting that irradiation can significantly increase the use of raw DFD pork and greatly benefit pork industry

    Quality Characteristics of Aerobically Packaged and Irradiated Normal, PSE, and DFD Pork

    Get PDF
    Irradiation and storage increased lipid oxidation of normal and pale-soft-exudative (PSE) muscles, whereas dark-firm-dry (DFD) muscle was very stable and resistant to oxidative changes. Irradiation increased redness regardless of pork-quality type, and the increases were proportional to irradiation dose. Irradiation increased the production of sulfurcontaining volatiles, but not lipid oxidation products. The total volatiles produced in normal and PSE pork were higher than that in the DFD pork. Some volatiles produced in meat by irradiation evaporated during storage under aerobic packaging conditions. Nonirradiated normal and DFD pork had higher odor preference scores than the nonirradiated PSE, but irradiation reduced the preference scores of all three pork-quality types. This suggests that irradiation can significantly increase the use of DFD pork, and can greatly benefit pork and beef industries
    • …
    corecore