37,896 research outputs found

    Elimination of negative differential conductance in an asymmetric molecular transistor by an ac-voltage

    Full text link
    We analyze resonant tunneling subject to a non-adiabatic time-dependent bias-voltage through an asymmetric single molecular quantum dot with coupling between the electronic and vibrational degrees of freedom using a {\em Tien-Gordon-type} rate equation. Our results clearly exhibit the appearance of photon-assisted satellites in the current-voltage characteristics and the elimination of hot-phonon-induced negative differential conductance with increasing ac driving amplitude for an asymmetric system. This can be ascribed to an {\em ac-induced suppression} of unequilibrated (hot) phonons in an asymmetric system.Comment: Accepted by Appl. Phys. Let

    Finite-frequency current (shot) noise in coherent resonant tunneling through a coupled-quantum-dot interferometer

    Full text link
    We examine the shot noise spectrum properties of coherent resonant tunneling in coupled quantum dots in both series and parallel arrangements by means of quantum rate equations and MacDonald's formula. Our results show that, for a series-CQD with a relatively high dot-dot hopping Ω\Omega, Ω/Γ≳1\Omega/\Gamma\gtrsim 1 (Γ\Gamma denotes the dot-lead tunnel-coupling strength), the noise spectrum exhibits a dip at the Rabi frequency, 2Ω2\Omega, in the case of noninteracting electrons, but the dip is supplanted by a peak in the case of strong Coulomb repulsion; furthermore, it becomes a dip again for a completely symmetric parallel-CQD by tuning enclosed magnetic-flux.Comment: 8 pages, 5 figure

    Positive current noise cross-correlations in capacitively coupled double quantum dots with ferromagnetic leads

    Full text link
    We examine cross-correlations (CCs) in the tunneling currents through two parallel interacting quantum dots coupled to four independent ferromagnetic electrodes. We find that when either one of the two circuits is in the parallel configuration with sufficiently strong polarization strength, a new mechanism of dynamical spin blockade, i.e., a spin-dependent bunching of tunneling events, governs transport through the system together with the inter-dot Coulomb interaction, leading to a sign-reversal of the zero-frequency current CC in the dynamical channel blockade regime, and to enhancement of positive current CC in the dynamical channel anti-blockade regimes, in contrast to the corresponding results for the case of paramagnetic leads.Comment: 9 pages, 3 figure

    Tunable near- to mid-infrared pump terahertz probe spectroscopy in reflection geometry

    Full text link
    Strong-field mid-infrared pump--terahertz (THz) probe spectroscopy has been proven as a powerful tool for light control of different orders in strongly correlated materials. We report the construction of an ultrafast broadband infrared pump--THz probe system in reflection geometry. A two-output optical parametric amplifier is used for generating mid-infrared pulses with GaSe as the nonlinear crystal. The setup is capable of pumping bulk materials at wavelengths ranging from 1.2 μ\mum to 15 μ\mum and beyond, and detecting the subtle, transient photoinduced changes in the reflected electric field of the THz probe at different temperatures. As a demonstration, we present 15 μ\mum pump--THz probe measurements of a bulk EuSbTe3_{3} single crystal. A 0.5%0.5\% transient change in the reflected THz electric field can be clearly resolved. The widely tuned pumping energy could be used in mode-selective excitation experiments and applied to many strongly correlated electron systems.Comment: 4 pages, 4 figure
    • …
    corecore