18,354 research outputs found

    Gravitational waves from cosmic bubble collisions

    Full text link
    Cosmic bubbles are nucleated through the quantum tunneling process. After nucleation they would expand and undergo collisions with each other. In this paper, we focus in particular on collisions of two equal-sized bubbles and compute gravitational waves emitted from the collisions. First, we study the mechanism of the collisions by means of a real scalar field and its quartic potential. Then, using this model, we compute gravitational waves from the collisions in a straightforward manner. In the quadrupole approximation, time-domain gravitational waveforms are directly obtained by integrating the energy-momentum tensors over the volume of the wave sources, where the energy-momentum tensors are expressed in terms of the scalar field, the local geometry and the potential. We present gravitational waveforms emitted during (i) the initial-to-intermediate stage of strong collisions and (ii) the final stage of weak collisions: the former is obtained numerically, in \textit{full General Relativity} and the latter analytically, in the flat spacetime approximation. We gain qualitative insights into the time-domain gravitational waveforms from bubble collisions: during (i), the waveforms show the non-linearity of the collisions, characterized by a modulating frequency and cusp-like bumps, whereas during (ii), the waveforms exhibit the linearity of the collisions, featured by smooth monochromatic oscillations.Comment: 17 pages, 5 figure

    Properties of Microlensing Central Perturbations by Planets in Binary Stellar Systems under the Strong Finite-Source Effect

    Full text link
    We investigate high-magnification events caused by planets in wide binary stellar systems under the strong finite-source effect, where the planet orbits one of the companions. From this, we find that the pattern of central perturbations in triple lens systems commonly appears as a combination of individual characteristic patterns of planetary and binary lens systems in a certain range where the sizes of the caustics induced by a planet and a binary companion are comparable, and the range changes with the mass ratio of the planet to the planet-hosting star. Specially, we find that because of this central perturbation pattern, the characteristic feature of high-magnification events caused by the triple lens systems appears in the residual from the single-lensing light curve despite the strong finite-source effect, and it is discriminated from those of the planetary and binary lensing events and thus can be used for the identification of the existence of both planet and binary companion. This characteristic feature is a simultaneous appearance of two features. First, double negative-spike and single positive-spike features caused by the binary companion appear together in the residual, where the double negative spike occurs at both moments when the source enters and exits the caustic center and the single positive spike occurs at the moment just before the source enters into or just after the source exits from the caustic center. Second, the magnification excess before or after the single positive-spike feature is positive due to the planet, and the positive excess has a remarkable increasing or decreasing pattern depending on the source trajectory.Comment: 12 pages, 3 figures, accepted for publication in Ap
    • …
    corecore