73,648 research outputs found
Quantum Crooks fluctuation theorem and quantum Jarzynski equality in the presence of a reservoir
We consider the quantum mechanical generalization of Crooks Fluctuation
Theorem and Jarzynski Equality for an open quantum system. The explicit
expression for microscopic work for an arbitrary prescribed protocol is
obtained, and the relation between quantum Crooks Fluctuation Theorem, quantum
Jarzynski Equality and their classical counterparts are clarified. Numerical
simulations based on a two-level toy model are used to demonstrate the validity
of the quantum version of the two theorems beyond linear response theory
regime.Comment: 6 pages, 3 figures, any comments are welcom
H∞ fuzzy control for systems with repeated scalar nonlinearities and random packet losses
Copyright [2009] IEEE. This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of Brunel University's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to [email protected]. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.This paper is concerned with the H∞ fuzzy control problem for a class of systems with repeated scalar nonlinearities and random packet losses. A modified Takagi-Sugeno (T-S) fuzzy model is proposed in which the consequent parts are composed of a set of discrete-time state equations containing a repeated scalar nonlinearity. Such a model can describe some well-known nonlinear systems such as recurrent neural networks. The measurement transmission between the plant and controller is assumed to be imperfect and a stochastic variable satisfying the Bernoulli random binary distribution is utilized to represent the phenomenon of random packet losses. Attention is focused on the analysis and design of H∞ fuzzy controllers with the same repeated scalar nonlinearities such that the closed-loop T-S fuzzy control system is stochastically stable and preserves a guaranteed H∞ performance. Sufficient conditions are obtained for the existence of admissible controllers, and the cone complementarity linearization procedure is employed to cast the controller design problem into a sequential minimization one subject to linear matrix inequalities, which can be readily solved by using standard numerical software. Two examples are given to illustrate the effectiveness of the proposed design method
Recommended from our members
Anthropometrics without numbers!
(Anthropometrics without Numbers!
An Investigation of Designers' Use and Preference of People Data
By Nickpour F and Dong H)
There is still missing knowledge to encourage and support designers in adoption and implementation of inclusive design. Some of this missing knowledge comes in the form of anthropometric data which provides accessible information on users' capabilities and limitations. Support and resources for designers on this type of data seems to be limited and exclusive. This study focuses on evaluating the existing use of anthropometric data by professional designers, aiming to explore means of presenting such data more effectively. Ten UK-based design consultancies were interviewed and completed questionnaires collecting information on designer’s current use of anthropometric data, their suggestions on presentation of that data and their preferences on data tools. It is concluded that the use of anthropometric data sources by designers is very limited and minimal; experienced designers tend to rely mainly on experimental methods such as physical prototyping and engagement with people. The results provide insights into designers' existing approaches to data collection and use. This study highlights the need for development of a highly visual, simple and intuitive data tool based on the interviewed designers’ preferences and suggestions. This has to be done by carefully adopting the designers’ existing approaches to data collection and use and by adapting existing data into that
Algebraic approach to the Hulthen potential
In this paper the energy eigenvalues and the corresponding eigenfunctions are
calculated for Hulthen potential. Then we obtain the ladder operators and show
that these operators satisfy SU(2) commutation relation.Comment: 8 Pages, 1 Tabl
Robust H∞ filtering for a class of nonlinear networked systems with multiple stochastic communication delays and packet dropouts
Copyright [2010] IEEE. This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of Brunel University's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to [email protected].
By choosing to view this document, you agree to all provisions of the copyright laws protecting it.In this paper, the robust H∞ filtering problem is studied for a class of uncertain nonlinear networked systems with both multiple stochastic time-varying communication delays and multiple packet dropouts. A sequence of random variables, all of which are mutually independent but obey Bernoulli distribution, are introduced to account for the randomly occurred communication delays. The packet dropout phenomenon occurs in a random way and the occurrence probability for each sensor is governed by an individual random variable satisfying a certain probabilistic distribution in the interval. The discrete-time system under consideration is also subject to parameter uncertainties, state-dependent stochastic disturbances and sector-bounded nonlinearities. We aim to design a linear full-order filter such that the estimation error converges to zero exponentially in the mean square while the disturbance rejection attenuation is constrained to a give level by means of the H∞ performance index. Intensive stochastic analysis is carried out to obtain sufficient conditions for ensuring the exponential stability as well as prescribed H∞ performance for the overall filtering error dynamics, in the presence of random delays, random dropouts, nonlinearities, and the parameter uncertainties. These conditions are characterized in terms of the feasibility of a set of linear matrix inequalities (LMIs), and then the explicit expression is given for the desired filter parameters. Simulation results are employed to demonstrate the effectiveness of the proposed filter design technique in this paper.This work was supported in part by the Engineering and Physical Sciences Research Council (EPSRC) of the U.K. under Grant GR/S27658/01, the Royal Society of the U.K., the Alexander von Humboldt Foundation of Germany, National Natural Science Foundation of China under Grant 60825303, 60834003, 973 Project under Grant 2009CB320600, Fok Ying Tung Education Foundation under Grant 111064, and the Youth Science Fund of Heilongjiang Province under Grant QC2009C63
Recommended from our members
Observer-based H∞ control for systems with repeated scalar nonlinearities and multiple packet losses
This paper is concerned with the H∞ control problem for a class of systems with repeated scalar nonlinearities and multiple missing measurements. The nonlinear system is described by a discrete-time state equation involving a repeated scalar nonlinearity, which typically appears in recurrent neural networks. The measurement missing phenomenon is assumed to occur, simultaneously, in the communication channels from the sensor to the controller and from the controller to the actuator, where the missing probability for each sensor/actuator is governed by an individual random variable satisfying a certain probabilistic distribution in the interval [0 1]. Attention is focused on the analysis and design of an observer-based feedback controller such that the closed-loop control system is stochastically stable and preserves a guaranteed H∞ performance. Sufficient conditions are obtained for the existence of admissible controllers. It is shown that the controller design problem under consideration is solvable if certain linear matrix inequalities (LMIs) are feasible. Three examples are provided to illustrate the effectiveness of the developed theoretical result
Recommended from our members
User characteristics: Professional vs. lay users
(User characteristics: professional use vs lay use by Cifter A and Dong H)
The market success of a product largely depends on whether it correctly addresses the user needs. Understanding the user is increasingly becoming important in the design process. Different user models may determine different approaches to design. This paper identifies the characteristics of different types of users, with a specific focus on professional users and lay users. It gives a definition of professional users and lay users in the context of adapting products originally designed for professional use to the use of lay people (for example, home use medical devices). It summarises, and compares, the characteristics of professional users and lay users, suggesting that designers pay attention to user characteristics and the context of use so as to better address user perceptions and meet user needs
Combating barriers to inclusive design – Evaluation of an inclusive design toolkit
This research is based on a number of studies of barriers to inclusive design [1-4], in particular the authors ’ own investigation of drivers for, and barriers to, inclusive design within the UK consumer product industry [4], where two mail surveys were conducted: one with 177 industrial design consultancies, and the other with 152 consumer produc
Fault detection for markovian jump systems with sensor saturations and randomly varying nonlinearities
This is the post-print version of the Article. The official published version can be accessed from the link below - Copyright @ 2012 IEEE.This paper addresses the fault detection problem for discrete-time Markovian jump systems with incomplete knowledge of transition probabilities, randomly varying nonlinearities and sensor saturations. For the Markovian mode jumping, the transition probability matrix is allowed to have partially unknown entries, while the cases with completely known or completely unknown transition probabilities are also investigated as two special cases. The randomly varying nonlinearities and the sensor saturations are introduced to reflect the limited capacity of the communication networks resulting from the noisy environment, probabilistic communication failures, measurements of limited amplitudes, etc. Two energy norm indices are used for the fault detection problem in order to account for, respectively, the restraint of disturbance and the sensitivity of faults. The purpose of the problem addressed is to design an optimized fault detection filter such that 1) the fault detection dynamics is stochastically stable; 2) the effect from the exogenous disturbance on the residual is attenuated with respect to a minimized H∞-norm; and 3) the sensitivity of the residual to the fault is enhanced by means of a maximized H∞-norm. The characterization of the gains of the desired fault detection filters is derived in terms of the solution to a convex optimization problem that can be easily solved by using the semi-definite programme method. Finally, a simulation example is employed to show the effectiveness of the fault detection filtering scheme proposed in this paper.This work was supported in part by the National 973 Project under Grant 2009CB320600, the National Natural Science Foundation of China under Grants 61028008, 61134009, 60825303, 90916005 and 61004067, the Engineering and Physical Sciences Research Council (EPSRC) of the U.K. under Grant GR/S27658/01, the Royal Society of the U.K., and the Alexander von Humboldt Foundation of Germany
- …