209 research outputs found

    Knowledge Restore and Transfer for Multi-label Class-Incremental Learning

    Full text link
    Current class-incremental learning research mainly focuses on single-label classification tasks while multi-label class-incremental learning (MLCIL) with more practical application scenarios is rarely studied. Although there have been many anti-forgetting methods to solve the problem of catastrophic forgetting in class-incremental learning, these methods have difficulty in solving the MLCIL problem due to label absence and information dilution. In this paper, we propose a knowledge restore and transfer (KRT) framework for MLCIL, which includes a dynamic pseudo-label (DPL) module to restore the old class knowledge and an incremental cross-attention(ICA) module to save session-specific knowledge and transfer old class knowledge to the new model sufficiently. Besides, we propose a token loss to jointly optimize the incremental cross-attention module. Experimental results on MS-COCO and PASCAL VOC datasets demonstrate the effectiveness of our method for improving recognition performance and mitigating forgetting on multi-label class-incremental learning tasks

    Assessing Prompt Injection Risks in 200+ Custom GPTs

    Full text link
    In the rapidly evolving landscape of artificial intelligence, ChatGPT has been widely used in various applications. The new feature: customization of ChatGPT models by users to cater to specific needs has opened new frontiers in AI utility. However, this study reveals a significant security vulnerability inherent in these user-customized GPTs: prompt injection attacks. Through comprehensive testing of over 200 user-designed GPT models via adversarial prompts, we demonstrate that these systems are susceptible to prompt injections. Through prompt injection, an adversary can not only extract the customized system prompts but also access the uploaded files. This paper provides a first-hand analysis of the prompt injection, alongside the evaluation of the possible mitigation of such attacks. Our findings underscore the urgent need for robust security frameworks in the design and deployment of customizable GPT models. The intent of this paper is to raise awareness and prompt action in the AI community, ensuring that the benefits of GPT customization do not come at the cost of compromised security and privacy

    Topology-Preserving Automatic Labeling of Coronary Arteries via Anatomy-aware Connection Classifier

    Full text link
    Automatic labeling of coronary arteries is an essential task in the practical diagnosis process of cardiovascular diseases. For experienced radiologists, the anatomically predetermined connections are important for labeling the artery segments accurately, while this prior knowledge is barely explored in previous studies. In this paper, we present a new framework called TopoLab which incorporates the anatomical connections into the network design explicitly. Specifically, the strategies of intra-segment feature aggregation and inter-segment feature interaction are introduced for hierarchical segment feature extraction. Moreover, we propose the anatomy-aware connection classifier to enable classification for each connected segment pair, which effectively exploits the prior topology among the arteries with different categories. To validate the effectiveness of our method, we contribute high-quality annotations of artery labeling to the public orCaScore dataset. The experimental results on both the orCaScore dataset and an in-house dataset show that our TopoLab has achieved state-of-the-art performance.Comment: Accepted by MICCAI 202
    • …
    corecore