2,867 research outputs found

    Simple non-Abelian extensions of the standard model gauge group and the diboson excesses at the LHC

    Full text link
    The ATLAS collaboration reported excesses at around 2 TeV in the di-boson production decaying into hadronic final states. We consider the possibility of explaining the excesses with extra gauge bosons in two simple non-Abelian extensions of the Standard Model. One is the so-called G(221)G(221) models with a symmetry structure of SU(2)1βŠ—SU(2)2βŠ—U(1)XSU(2)_1\otimes SU(2)_2\otimes U(1)_X and the other is the G(331)G(331) models with an extended symmetry of SU(3)CβŠ—SU(3)LβŠ—U(1)XSU(3)_C\otimes SU(3)_L\otimes U(1)_X. The Wβ€²W' and Zβ€²Z' bosons emerge after the electroweak symmetry is spontaneously broken. Two patterns of symmetry breaking in the G(221)G(221) models are considered in this work: one is SU(2)LβŠ—SU(2)2βŠ—U(1)Xβ†’SU(2)LβŠ—U(1)YSU(2)_L\otimes SU(2)_2 \otimes U(1)_X \to SU(2)_L\otimes U(1)_Y, the other is SU(2)1βŠ—SU(2)2βŠ—U(1)Yβ†’SU(2)LβŠ—U(1)YSU(2)_1\otimes SU(2)_2 \otimes U(1)_Y \to SU(2)_L\otimes U(1)_Y. The symmetry breaking of the G(331)G(331) model is SU(3)LβŠ—U(1)Xβ†’SU(2)LβŠ—U(1)YSU(3)_L\otimes U(1)_X \to SU(2)_L \otimes U(1)_Y. We perform a global analysis of Wβ€²W^\prime and Zβ€²Z^\prime phenomenology in ten new physics models, including all the channels of Wβ€²/Zβ€²W^\prime/Z^\prime decay. Our study shows that the leptonic mode and the dijet mode of Wβ€²/Zβ€²W^\prime/Z^\prime decays impose a very stringent bound on the parameter space in several new physics models. Such tight bounds provide a useful guide for building new physics models to address on the diboson anomalies. We also note that the Left-Right and Lepton-Phobic models can explain the 3.4Οƒ3.4\sigma WZWZ excess if the 2.6Οƒ2.6\sigma deviation in the W+Wβˆ’W^+W^- pair around 2~TeV were confirmed to be a fluctuation of the SM backgrounds.Comment: Publish version; title changed as suggested by journal Edito

    Resolving the Degeneracy in Single Higgs Production with Higgs Pair Production

    Full text link
    The Higgs boson production can be affected by several anomalous couplings, e.g. ctc_t and cgc_g anomalous couplings. Precise measurement of ggβ†’hgg\to h production yields two degenerate parameter spaces of ctc_t and cgc_g; one parameter space exhibits the SM limit while the other does not. Such a degeneracy could be resolved by Higgs boson pair production. In this work we adapt the strategy suggested by the ATLAS collaboration to explore the potential of distinguishing the degeneracy at the 14 TeV LHC. If the ctc_t anomalous coupling is induced only by the operator H†HQΛ‰LH~tRH^\dag H \bar Q_L \tilde{H} t_R, then the non-SM-like band could be excluded with an integrated luminosity of ∼235Β fbβˆ’1\sim 235~{\rm fb}^{-1}. Making use of the fact that the Higgs boson pair is mainly produced through an ss-wave scattering, we propose an analytical function to describe the fraction of signal events surviving a series of experimental cuts for a given invariant mass of Higgs boson pair. The function is model independent and can be applied to estimate the discovery potential of various NP models

    New Class of Two-Loop Neutrino Mass Models with Distinguishable Phenomenology

    Full text link
    We discuss a new class of neutrino mass models generated in two loops, and explore specifically three new physics scenarios: (A) doubly charged scalar, (B) dark matter, and (C) leptoquark and diquark, which are verifiable at the 14 TeV LHC Run-II. We point out how the different Higgs insertions will distinguish our two-loop topology with others if the new particles in the loop are in the simplest representations of the SM gauge group

    The Diphoton Excess, Low Energy Theorem and the 331 Model

    Full text link
    We interpret the diphoton anomaly as a heavy scalar H3H_3 in the so-called 331 model. The scalar is responsible for breaking the SU(3)CβŠ—SU(3)LβŠ—U(1)XSU(3)_C\otimes SU(3)_L\otimes U(1)_X gauge symmetry down to the standard model electroweak gauge group. It mainly couples to the standard model gluons and photons through quantum loops involving heavy quarks and leptons. Those quarks and leptons, in together with the SM quarks and leptons, form the fundamental representation of the 331 model. We use low energy theorem to calculate effective coupling of H3ggH_3gg, H3Ξ³Ξ³H_3\gamma\gamma, H3ZZH_3ZZ, H3WWH_3WW and H3ZΞ³H_3Z\gamma. The analytical results can be applied to new physics models satisfying the low energy theorem. We show that the heavy quark and lepton contribution cannot produce enough diphoton pairs. It is crucial to include the contribution of charged scalars to explain the diphoton excess. The extra neutral Zβ€²Z^\prime boson could also explain the 2 TeV diboson excess observed at the LHC Run-I.Comment: To appear in PR

    Estimation of Semiparametric Multi-Index Models Using Deep Neural Networks

    Full text link
    In this paper, we consider estimation and inference for both the multi-index parameters and the link function involved in a class of semiparametric multi-index models via deep neural networks (DNNs). We contribute to the design of DNN by i) providing more transparency for practical implementation, ii) defining different types of sparsity, iii) showing the differentiability, iv) pointing out the set of effective parameters, and v) offering a new variant of rectified linear activation function (ReLU), etc. Asymptotic properties for the joint estimates of both the index parameters and the link functions are established, and a feasible procedure for the purpose of inference is also proposed. We conduct extensive numerical studies to examine the finite-sample performance of the estimation methods, and we also evaluate the empirical relevance and applicability of the proposed models and estimation methods to real data
    • …
    corecore