65,073 research outputs found

    RQM description of PS meson form factors, constraints from space-time translations, and underlying dynamics

    Full text link
    The role of Poincar\'e covariant space-time translations is investigated in the case of the pseudoscalar-meson charge form factors. It is shown that this role extends beyond the standard energy-momentum conservation, which is accounted for in all relativistic quantum mechanics calculations. It implies constraints that have been largely ignored until now but should be fulfilled to ensure the full Poincar\'e covariance. The violation of these constraints, which is more or less important depending on the form of relativistic quantum mechanics that is employed, points to the validity of using a single-particle current, which is generally assumed in calculations of form factors. In short, these constraints concern the relation of the momentum transferred to the constituents to the one transferred to the system. How to account for the related constraints, as well as restoring the equivalence of different relativistic quantum mechanics approaches in estimating form factors, is discussed. Some conclusions relative to the underlying dynamics are given in the pion case.Comment: 37 pages, 13 figures; figures completed for notations, revised text with better emphasis on differences with previous works; accepted for publication in EPJ

    Form factors in relativistic quantum mechanics: constraints from space-time translations

    Get PDF
    The comparison of form factors calculated from a single-particle current in different relativistic quantum mechanic approaches evidences tremendous discrepancies. The role of constraints coming from space-time translations is considered here with this respect. It is known that invariance under these translations implies the energy-momentum conservation relation that is usually assumed to hold globally. Transformations of the current under these translations, which lead to this result, also imply constraints that have been ignored so far in relativistic quantum mechanic approaches. An implementation of these constraints is discussed in the case of a model with two scalar constituents. It amounts to incorporate selected two-body currents to all orders in the interaction. Discrepancies for form factors in different approaches can thus be removed, contributing to restore the equivalence of different approaches. Results for the standard front-form approach (q+=0q^+=0) are found to fulfill the constraints and are therefore unchanged. The relation with results from a dispersion-relation approach is also made.Comment: 8 pages, 5 figures; to be published in the proceedings of LC2008; Light Cone 2008. Relativistic Nuclear and Particle Physics, Mulhouse : France (2008

    Entanglement changing power of two-qubit unitary operations

    Full text link
    We consider a two-qubit unitary operation along with arbitrary local unitary operations acts on a two-qubit pure state, whose entanglement is C_0. We give the conditions that the final state can be maximally entangled and be non-entangled. When the final state can not be maximally entangled, we give the maximal entanglement C_max it can reach. When the final state can not be non-entangled, we give the minimal entanglement C_min it can reach. We think C_max and C_min represent the entanglement changing power of two-qubit unitary operations. According to this power we define an order of gates.Comment: 11 page
    • …
    corecore