2,273 research outputs found

    Observe matter falling into a black hole

    Full text link
    It has been well known that in the point of view of a distant observer, all in-falling matter to a black hole (BH) will be eventually stalled and "frozen" just outside the event horizon of the BH, although an in-falling observer will see the matter falling straight through the event horizon. Thus in this "frozen star" scenario, as distant observers, we could never observe matter falling into a BH, neither could we see any "real" BH other than primordial ones, since all other BHs are believed to be formed by matter falling towards singularity. Here we first obtain the exact solution for a pressureless mass shell around a pre-existing BH. The metrics inside and interior to the shell are all different from the Schwarzschild metric of the enclosed mass. The metric interior to the shell can be transformed to the Schwarzschild metric for a slower clock which is dependent of the location and mass of the shell. Another result is that there does not exist a singularity nor event horizon in the shell. Therefore the "frozen star" scenario is incorrect. We also show that for all practical astrophysical settings the in-falling time recorded by an external observer is sufficiently short that future astrophysical instruments may be able to follow the whole process of matter falling into BHs. The distant observer could not distinguish between a "real" BH and a "frozen star", until two such objects merge together. It has been proposed that electromagnetic waves will be produced when two "frozen stars" merge together, but not true when two "real" bare BHs merge together. However gravitational waves will be produced in both cases. Thus our solution is testable by future high sensitivity astronomical observations.Comment: 7 pages, 2 figures. Proceeding of the conference "Astrophysics of Compact Objects", 1-7 July, Huangshan, China. Abridged abstrac

    Dark Energy: a Brief Review

    Full text link
    The problem of dark energy is briefly reviewed in both theoretical and observational aspects. In the theoretical aspect, dark energy scenarios are classified into symmetry, anthropic principle, tuning mechanism, modified gravity, quantum cosmology, holographic principle, back-reaction and phenomenological types. In the observational aspect, we introduce cosmic probes, dark energy related projects, observational constraints on theoretical models and model independent reconstructions.Comment: 19 pages, invited review article to appear in the special issue of "Frontiers of Physics" dedicated to "High energy astrophysics", an shortened version of our previous article arXiv:1103.587

    Revisit of cosmic age problem

    Full text link
    We investigate the cosmic age problem associated with 9 extremely old globular clusters in M31 galaxy and 1 very old high-zz quasar APM 08279 + 5255 at z=3.91z=3.91. These 9 globular clusters have not been used to study the cosmic age problem in the previous literature. By evaluating the age of the universe in the Λ\LambdaCDM model with the observational constraints from the SNIa, the BAO, the CMB, and the independent H0H_0 measurements, we find that the existence of 5 globular clusters and 1 high-zz quasar are in tension (over 2σ\sigma confidence level) with the current cosmological observations. So if the age estimates of these objects are correct, the cosmic age puzzle still remains in the standard cosmology. Moreover, we extend our investigations to the cases of the interacting dark energy models. It is found that although the introduction of the interaction between dark sectors can give a larger cosmic age, the interacting dark energy models still have difficulty to pass the cosmic age test.Comment: 11 pages, 5 figures, 1 table, accepted for publication in PR
    • …
    corecore